第一范文网 - 专业文章范例文档资料分享平台

如皋市中考数学一模试卷

来源:用户分享 时间:2025/5/24 22:20:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2018年如皋市中考数学一模试卷

由题意得,AP=32海里,PD=16∵sin∠PAC=

=

=

海里,

∴在Rt△PAD中,∠PAC=45°,

∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.

答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域. 22.

【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3), 将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1), 将A与B的坐标代入y=kx+b得:解得:

则一次函数解析式为y=x+2;

(2)由图象得: x+2>的x的取值范围是:﹣6<x<0或x>2;

(3)∵y=x+2中,y=0时, x+2=0, 解得x=﹣4,则C(﹣4,0),OC=4 ∴△BOC的面积=×4×1=2, ∴S△ACP=

=×2=3.

∵S△ACP=CP×3=CP,

17 / 25

2018年如皋市中考数学一模试卷

∴CP=3, ∴CP=2, ∵C(﹣4,0),

∴点P的坐标为(﹣2,0)或(﹣6,0).

23.

【解答】解:(1)假设第一次相切时,△ABC移至△A′B′C′处, 如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F, 设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l, 由切线长定理可知C′E=C′D, 设C′D=x,则C′E=x,

∵△ABC是等腰直角三角形, ∴∠A=∠ACB=45°, ∴∠A′C′B′=∠ACB=45°, ∴△EFC′是等腰直角三角形, ∴C′F=

x,∠OFD=45°,

∴△OFD也是等腰直角三角形, ∴OD=DF, ∴

x+x=1,则x=

﹣1,

﹣1)=5﹣

∴CC′=BD﹣BC﹣C′D=5﹣1﹣(∴点C运动的时间为则经过

秒,△ABC的边与圆第一次相切;

(2)如图2,设经过t秒△ABC的边与圆第一次相切,△ABC移至△A′B′C′处,

18 / 25

2018年如皋市中考数学一模试卷

⊙O与BC所在直线的切点D移至D′处,

A′C′与⊙O切于点E,连OE并延长,交B′C′于F, ∵CC′=2t,DD′=t,

∴C′D′=CD+DD′﹣CC′=4+t﹣2t=4﹣t, 由切线长定理得C′E=C′D′=4﹣t, 由(1)得:4﹣t=解得:t=5﹣答:经过5﹣

秒△ABC的边与圆第一次相切;

﹣1,

(3)由(2)得CC′=(2+0.5)t=2.5t,DD′=t, 则C′D′=CD+DD′﹣CC′=4+t﹣2.5t=4﹣1.5t, 由切线长定理得C′E=C′D′=4﹣1.5t, 由(1)得:4﹣1.5t=解得:t=

=

﹣1,

∴点B运动的距离为2×

19 / 25

2018年如皋市中考数学一模试卷

24.

【解答】解:(1)由抛物线y=ax2+2ax+c,可得C(0,c),对称轴为x=﹣∵OC=OA,

∴A(﹣c,0),B(﹣2+c,0), ∵AB=4,

∴﹣2+c﹣(﹣c)=4, ∴c=3,

∴A(﹣3,0),

代入抛物线y=ax2+2ax+3,得 0=9a﹣6a+3, 解得a=﹣1,

∴抛物线的解析式为y=﹣x2﹣2x+3;

=﹣1,

(2)如图1,∵M(m,0),PM⊥x轴, ∴P(m,﹣m2﹣2m+3), 又∵对称轴为x=﹣1,PQ∥AB, ∴Q(﹣2﹣m,﹣m2﹣2m+3), 又∵QN⊥x轴, ∴矩形PQNM的周长 =2(PM+PQ)

=2[(﹣m2﹣2m+3)+(﹣2﹣m﹣m)] =2(﹣m2﹣4m+1) =﹣2(m+2)2+10,

20 / 25

搜索更多关于: 如皋市中考数学一模试卷 的文档
如皋市中考数学一模试卷.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c62i6c6vvwe0cqsi0v0jd0weks4q8c700nqi_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top