第一范文网 - 专业文章范例文档资料分享平台

正方形与全等模型(含答案)

来源:用户分享 时间:2025/5/22 12:39:54 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

AE=AN, ∵∠BAD=90°,∠MAN=45°, ∴∠1+∠3=90°﹣∠MAN=45°, ∴∠2+∠3=45°, 即∠EAM=45°, ∵在△EAM和△NAM中, , ∴△EAM≌△NAM(SAS), 又∵EM和NM是对应边, ∴AB=AH(全等三角形对应边上的高相等); (2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF, ∵AD是△ABC的高, ∴∠ADB=∠ADC=90° ∴∠E=∠F=90°, 又∵∠BAC=45° ∴∠EAF=90° 延长EB、FC交于点G,则四边形AEGF是矩形, 又∵AE=AD=AF ∴四边形AEGF是正方形, 由(1)、(2)知:EB=DB=2,FC=DC=3, 设AD=x,则EG=AE=AD=FG=x, ∴BG=x﹣2;CG=x﹣3;BC=2+3=5, 在Rt△BGC中,(x﹣2)+(x22﹣3)=5 解得x1=6,x2=﹣1, 故AD的长为6. 2点评: 本题主要考查正方形的性质和三角形全等的判断,题目的综合性很强,难度中等. 19.(2011?咸宁)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数. (2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由. (3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.

考点: 正方形的性质;全等三角形的判定与性质;勾

搜索更多关于: 正方形与全等模型(含答案) 的文档
正方形与全等模型(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c632pp8jx1o79ew80p2ts_13.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top