∴x2﹣1=解得x=
1(x+1)或x2﹣1=3(x+1), 34,x=﹣1(舍去)或x=4,x=﹣1(舍去); 347,﹣)或(4,﹣15); 39∴M点的坐标为:M(
②当x<﹣1时,AN=﹣1﹣x,MN=x2﹣1; ∴x2﹣1=解得x=
1(﹣x﹣1)或x2﹣1=3(﹣x﹣1), 32,x=﹣1(两个都不合题意,舍去)或x=﹣2,x=﹣1(舍去); 347,﹣)或(4,﹣15)或(﹣2,﹣3). 39∴M(﹣2,﹣3);
故存在符合条件的M点,且坐标为:M(【点睛】
此题主要考查了二次函数解析式的确定、图形面积的求法以及相似三角形的判定和性质等重要知识点,同时还考查了分类讨论的数学思想. 23.(1)详见解析;(2)23. 【解析】 【分析】
(1)连接OD,如图,利用切线的性质得∠OCD+∠DCF=90°,再利用垂径定理得到OF为CD的垂直平分线,则CF=DF,所以∠CDF=∠DCF,加上∠CDO=∠OCD,则∠CDO+∠CDB=90°,然后根据切线的判定定理得到结论;
(2)根据切线的性质得到∠CFO=30°,求得∠COF=60°,根据直角三角形的性质和垂径定理即可得到结论. 【详解】
(1)证明:连接OD,如图,
∵CF是⊙O的切线 ∴∠OCF=90°, ∴∠OCD+∠DCF=90° ∵直径AB⊥弦CD,
∴CE=ED,即OF为CD的垂直平分线 ∴CF=DF, ∴∠CDF=∠DCF, ∵OC=OD, ∴∠CDO=∠OCD
∴∠CDO+∠CDB=∠OCD+∠DCF=90°, ∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:∵FC,FD是⊙O的切线,∠CFD=60°, ∴∠CFO=30°, ∴∠COF=60°, ∵CD⊥OB, ∴∠OCE=30°, ∵OC=2, ∴CE=
3OC=3, 2∴CD=2CE=23. 【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理和垂径定理. 24.-2 【解析】 【分析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、二次根式的性质分别化简得出答案. 【详解】
解:原式=1﹣3﹣2+4×=﹣2. 【点睛】
本题主要考查指数幂的性质和三角函数的有关计算,应当熟练掌握,这是考试的必考点. 25.(1)见解析;(2)【解析】 【分析】
(1)连接半径,由同圆的半径相等得:OA=OD,利用等边对等角可知:∠OAD=∠ODA,利用翻折的性质可知:∠OAD=∠EAD,∠E=∠AHD=90°,证OD∥AE,得∠ODE=90°,所以DE与⊙O相切;
(2)先证明△OAC是等边三角形,再证明OG∥BD,根据中位线定理可知:BD=2OG=5,于是得到结论. 【详解】
解:(1)连接OD, ∵OA=OD, ∴∠OAD=∠ODA,
由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°, ∴∠ODA=∠EAD, ∴OD∥AE,
∴∠E+∠ODE=180°, ∴∠ODE=90°, ∴DE与⊙O相切;
(2)∵将△AHD沿AD翻折得到△AED, ∴∠OAD=∠EAD=30°,
1 25 2∴∠OAC=60°, ∵OA=OD,
∴△OAC是等边三角形, ∴∠AOG=60°, ∵∠OAD=30°, ∴∠AGO=90°, ∴OG=
51AO=. 22
【点睛】
本题考查了切线的判定、平行线的性质和判定、翻折的性质、等边三角形的性质和判定,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,并熟练掌握等边三角形的性质和判定,明确翻折前后的两条边和角相等.
2019-2020学年数学中考模拟试卷
一、选择题
1.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x+1,﹣x}的最大值是( ) A.2
5?1 2B.5?1 2C.1 D.0
2.如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为S1,S2,S3,则
S1?S3?S2为( )(?取3)
A.
99-3
24B.
99+3 24C.
159-3 24D.
2727-3
243.如图,两个小正方形的边长都是1,以A为圆心,AD为半径作弧交BC于点G,则图中阴影部分的面积为( )
A. B. C. D.
4.下列各因式分解正确的是( ) A.x2+2x﹣1=(x﹣1)2 C.x﹣4x=x(x+2)(x﹣2)
3
B.﹣x2+(﹣2)2=(x﹣2)(x+2) D.(x+1)=x+2x+1
2
2
5.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A等,130分:150分;B等,110分:129分;C等,90分:109分;D等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):
2019年合肥市一模数学成绩频数分布表 等次 A 频数 6 2 频率 0.2 0.1 1 B C D 合计 2019年合肥市一模教学成绩频数分布直方图
相关推荐: