三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;
(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.
【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.
【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.
【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.
(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.
【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,
∴圆锥的体积V==
.
=
.. ..
(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°, M为线段AB的中点,
∴以O为原点,OA为x轴,OB为y轴,OP为z轴, 建立空间直角坐标系,
P(0,0,4),A(2,0,0),B(0,2,0), M(1,1,0),O(0,0,0), =(1,1,﹣4),
=(0,2,0),
设异面直线PM与OB所成的角为θ, 则cosθ=∴θ=arccos
.
.
=
=
.
∴异面直线PM与OB所成的角的为arccos
【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.
.. ..
(1)若f(x)为偶函数,求a的值; (2)若f(
)=
+1,求方程f(x)=1﹣
在区间[﹣π,π]上的解.
【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.
【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形. 【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出a的值,再根据三角形函数的性质即可求出. 【解答】解:(1)∵f(x)=asin2x+2cos2x, ∴f(﹣x)=﹣asin2x+2cos2x, ∵f(x)为偶函数, ∴f(﹣x)=f(x),
∴﹣asin2x+2cos2x=asin2x+2cos2x, ∴2asin2x=0, ∴a=0; (2)∵f(∴asin∴a=
)=
+1, )=a+1=
+1,
+2cos2(,
∴f(x)=sin2x+2cos2x=
, )+1=1﹣)=﹣
,
sin2x+cos2x+1=2sin(2x+)+1,
∵f(x)=1﹣∴2sin(2x+∴sin(2x+∴2x+∴x=﹣
=﹣
,
+2kπ,或2x+=π+2kπ,k∈Z,
π+kπ,或x=π+kπ,k∈Z,
.. ..
∵x∈[﹣π,π], ∴x=
或x=
或x=﹣
或x=﹣
【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.
19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为 f(x)=
(单位:分钟),
而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.
【考点】5B:分段函数的应用.
【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.
【分析】(1)由题意知求出f(x)>40时x的取值范围即可;
(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义. 【解答】解;(1)由题意知,当30<x<100时, f(x)=2x+
﹣90>40,
.. ..
相关推荐: