第一范文网 - 专业文章范例文档资料分享平台

2019年湖北省武汉市江夏区中考数学模拟试卷 含解析

来源:用户分享 时间:2025/8/29 21:09:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴∠ABD=∠C.

(2)解:过点B作BG∥AC交FE的延长线于点G.

∵BG∥AC, ∴∠C=∠GBE, ∵∠ABD=∠C,

∴∠GBE=∠C=∠ABD, ∵BD=BE, ∴∠BDE=∠BED, ∴∠BDF=∠BEG, ∴△BDF≌△BEG(ASA), ∴DF=EG, ∴EF=GD, ∵BG∥AC, ∴

(3)解:如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ⊥BE于J.

,即

∵AB2=AD?AC,AD=4.CD=5, ∴AB2=4×9, ∴AB=6,

在Rt△AHC中,∵cos∠CAH=∴AH=3, ∴BH=AH=3, ∵CH⊥AB, ∴CA=CB, ∴∠CAB=∠CBA, ∵AD∥BG, ∴

=,

∵FB=BG, ∴AF=AD=4,

∴BF=AB+AF=6+4=10, ∵cos∠FBJ=cos∠BAC=∴BJ=∴FJ=

=,

∵△ABD∽△ACB, ∴∴

=,

∴BD=BE=6,

∴S△BEF=?BE?FJ=×

=20

24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m?0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.

(1)若A点坐标为(﹣1,0),则B点坐标为 (3,0) .

(2)如图1,在 (1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO=∠ABC,试求点M坐标.

(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线PA、PB分别交抛物线于点E、F,若

=,求

的值.

【分析】(1)将A点坐标代入抛物线解析式中求出m的值,然后可将抛物线解析式写成交点式即可知道B点坐标.

(2)先考虑M在y轴负半轴的情况,在y轴负半轴上截取OG=OA=1,连AG,可证△GMA∽△GAC,然后根据得出的等式列方程即可求出M点坐标,由对称性可直接写出另一种情况.

(3)作EG⊥x轴于点G,FH⊥y轴于点H,由△EAG∽PAO得到线段比例等式推出OP的长度,得出P点坐标,算出直线PB解析式,与抛物线解析式联立可求出F点横坐标,再由△PFH∽△PBO即可得到所求线段比.

解:(1)将(﹣1,0)代入y=a(x2﹣2mx﹣3m2)得:1+2m﹣3m2=0, 解得:m=1或m=﹣(舍),

∴y=a(x2﹣2mx﹣3m2)=a(x+1)(x﹣3), ∴B(3,0). 故答案为:(3,0).

(2)当am=1时,抛物线解析式为y=x2﹣2x﹣3, ∴C(0,﹣3)

∴OB=OC=3,∠ABC=45°,

如图1,M在y轴负半轴上,在y轴负半轴上截取OG=OA=1,连AG,

则∠AGO=45°=∠ABC,AG=∴∠OCA+∠AMO=45°,

又∵∠OCA+∠GAC=∠AGO=45°, ∴∠AMG=∠GAC, 又∵∠AGM=∠CGA, ∴△GMA∽△GAC, ∴AG2=MG?GC,

又GC=OC﹣OG=2,设M(0,a) ∴2=(﹣1﹣a)?2, ∴a=﹣2,

∴M的坐标为(0,﹣2).

根据对称性可知(0,2)也符合要求.

综上所述,满足要求的M点的坐标有:(0,﹣2)、(0,2). (3)由抛物线解析式可得:A(﹣m,0),B(3m,0). ∵∴

, ,

如图2,作EG⊥x轴于点G,FH⊥y轴于点H,

2019年湖北省武汉市江夏区中考数学模拟试卷 含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6656m7eadq9ersa9pruq6ksx797jw500wqi_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top