第一范文网 - 专业文章范例文档资料分享平台

K均值算法图像分割

来源:用户分享 时间:2025/5/25 6:08:28 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

是为了解决一些特定的应用问题。该技术成功地应用于许多领域,例如:交通路口的电子警察、光学字符识别(OCR)、指纹识别、机动车牌号识别等等。

图像分割是指将一副图像分解为若干互不交叠的有意义且具有相同属性的区域。好的图像分割应具备的特性:①分割出来的各区域对某种性质如灰度、纹理而言具有相似性,区域内部比较平整;②相邻区域对分割所依据的性质有明显的差异;③区域边界上是明确和规整的。

大多数图像分割方法只是部分满足上述特征。如果强调分割区域的同性质约束,则分割区域很容易产生大量小孔和不规则边缘;若强调不同区域间性质差异的显著性,则易造成不 同区域的合并。具体处理时,不同的图像分割方法总是在各种约束条件之间寻找一种合理的平衡。

虽然图像分割方法已经有了很大的发展,但由于它的复杂性,仍有很多问题没有很好地得到解决。因此,人们至今还一直在努力发展新的、更有潜力的分割算法,以期实现更通用、更完美的分割结果。实践表明,对图像分割理论与技术的进一步研究仍然具有非常重要的意义。

本文首先对数字图像分割的一些经典分割方法作了概述,然后分析了现有项目开发中使用的图像分割方法所存在的问题,最后基于经典算法进行技术改进,实现了一种新的分割方 法,并将其应用到实验当中,取得了良好的效果。 1.2图像分割技术发展概况

利用计算机进行图像处理有两个目的:一是产生出更适合人观察和识别的图像,二是希望能够由计算机自动识别和理解图像。无论为了哪种目的,关键的一步就是能够对包含有大量、各式各样景物信息的图像进行分解,分解的最终结果是一些具有某种特征的最小成分即图像的基元。图像的特征指图像中可用作标志的属性。它可分为图像统计特征和图像的视觉特征两类。图像的视觉特征是一些人为特征,需通过变换才能得到,如图像的直方图。图像的视觉特征指人的视觉可直接感受到的自然特征,如区域的亮度、纹理或轮廓等等。上述将图像分解成具有不同特殊单元的过程就是图像的分割,由此可以看出,图像分割是实现图像分析的重要步骤。

图像分割是图像分析的初始步骤之一,也是图像处理最原始的问题,几乎自数字图像处理问世不久,人们就开始了图像分割技术的研究,并取得了相当的进展和成功。但由于它的复杂性,有许多问题没有很好地解决,因此人们至今还一直在努力发展新的、更有潜力的分 割算法,以期实现更通用、更完美的分割结果。图像分割是计算机图像处理的一个基本问题,是许多后续图像分析任务的第一步处理,特别是对于图像识别、图像的可视化和基于目标的图像压缩都高度依赖于分割结果。图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术,这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始的图像转化为更抽象、更紧凑的形式,使得更高层的分析和理解成为可能。通常,分割问题包括将给定图像中相似的块分割成一个区,相邻的分割结果是不相似的。从另一个角度

5

说,分割也可以被认为是像素的标记处理,属于同一区域的像素被标上相同的号。一直以来,人们致力于分割方法的研究,提出了很多分割方法。但是,图像分割仍然是图像处理中的一 个瓶颈。实际上,图像分割就是把图像中的目标分成许多感兴趣的区域与图像中各种物体目标相对应。目前可能的理解图像方法只限于信息中部分特征,如:灰度差别、局部纹理差别、 彩色差别、局部统计特征或局部区域的频谱特征的差别等成熟技术表征的特征。既然我们只能用图像信息中某些部分特征去分割区域,因此各种分割方法必然带有局限性。迄今为止,还没有一种图像分割方法适用于所有的图像。

图像分割的实质是要正确地划分属性空间,使得具有相同属性的像素归属于同一区域,不同属性的像素归属不同的区域。

图像分割方法的研究始于上世纪 50 年代,研究己有几十年的历史,借助各种理论 至今已提出了上千种各种类型的分割算法,而且这方面的研究仍在积极进行中。经典的 图像分割方法分为以下几种: 1、阈值分割技术

阈值分割技术是经典的、流行的图像分割方法之一,也是最简单的一种图像分割方法,这种方法的关键在于寻找适当的灰度阈值。常用的方法有最大类间方差法、最小误差法、最大熵法等。这些方法都是基于一维灰度直方图,而且对整幅图像使用一个固定全局阈值,如果图像中有阴影或光照不均等,分割效果会受到影响。为此,提出了用二维直方图或者动态阈值等技术进行分割,但同时计算复杂度会增加。阈值分割技术它仅适用于高反差的简单图像的分割,不能满足灰度渐变或以某种纹理而不是灰度来表征不同区域的那些复杂图像的分割。 2、区域技术

区域技术通过对目标像素的直接检测来实现分割。区域生长法是一种常用的区域技术。区域增长是:先从每个需要分割的目标中找一个种子像素作为生长的起点,然后将其周围的像素按照某种相似性标准(如灰度相似性)与之对比,如果满足标准则合并到种子像素的集合内,将新合并的像素作为新的种子像素继续向外扩展,直到找不到满足条件的像素为止。这种方法能够同时利用图像的多种性质进行分割,但是由于它采用串行机制,计算时间较长,实时性较差。 3、边缘检测技术

图像分割能够通过检测不同区域的边缘来获得。在目标的边缘处常常有灰度的急剧变化,借助各种空域微分算子,如梯度算子,方向算子,拉普拉斯算子和马尔算子等,能够检测出图像中具有边缘特性的像素点。在此基础上,采用边界闭合技术把边缘像素连接起来组成目标区域的封闭边界,从而达到分割的目的。但边界检测是一项困难的工作,因为通常图像的边界都很难找到。 随着数学工具,成像设备和计算机技术的发展,图像分割方法呈现出新的特点和趋势:

(1)多种新兴数学工具的加入,使得新的方法不断涌现。人工神经网络,小波理论和遗传

6

算法是加世纪 90 年代兴起的新型理论工具,人们将其应用到图像分割中,起到了改善分割效果,扩展适用范围以及提高运算速度等作用。

(2)成像设备和技术的发展使得应用对象的范围大大扩展。现在采集的图像种类与以往相比有了较大的变化和发展,不仅仅局限于常见的两维静止灰度图像,还有各种3 维图像,彩色图像,运动图像等等。这些发展对图像分割方法提出了更高的要求。

(3)多特征的利用和多方法的融合。图像分割方法要取得更好的效果,不能局限于单一特征的分析,而要综合利用多种信息。图像分割是一个复杂的过程,需要融合多种方法的优势进行。

1.3 图像分割方法的现状

从上世纪五十年代开始,学者一直热衷于研究图像分割技术。迄今为止,已提出上千种 图像分割算法,依这些算法对图像处理的特点,主要可分为以下几类方法。 (1)阈值分割法

阈值分割法作为一种常见的区域并行技术,它通过设置阀值,把像素点按灰度级分若干类,从而实现图像分割。由于是直接利用图像的灰度特性,因此计算方便简明、实用性强。显然,阈值分割方法的关键和难点是如何取得一个合适的阈值,而实际应用中阈值设定易受噪声和光亮度影响。近年来关于阈值分割法主要有:最大相关性原则选择阈值法、基于图像拓扑稳定状态法、灰度共生矩阵法、熵法、峰值和谷值分析法等。其中,自适应阈值法、最大熵法、模糊阈值法、类间阈值法是对传统阈值法改进较成功的几种算法。更多的情况下,阈值的选择会综合运用两种或两种以上的方法,这也是图像分割发展的一个趋势。例如,将图像的灰度直方图看作是高斯分布的选择法与自适应定向正交投影高斯分解法的结合,较好地拟合了直方图的多峰特性,从而得到了更为准确的分割效果。阈值法的缺陷主要在于它仅仅考虑了图像的灰度信息,而忽略了图像的空间信息。对于非此即彼的简单图像处理(如一些二值图像的处理)是有效的,但是对于图像中不存在明显的灰度差异或各物体的灰度值范围有较大重叠的图像分割问题则难以得到准确的分割效果。 (2)基于边缘的图像分割法

边缘总是以强度突变的形式出现,可以定义为图像局部特征的不连续性,如灰度的突变、纹理结构的突变等。边缘常常意味着一个区域的终结和另一个区域的开始,图像的边缘包含 了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,还保护了目标的边界结构。对于边缘的检测常常借助空间微分算子进行,通过将其模板与图像卷积完成。 两个具有不同灰度值的相邻区域之间总存在灰度边缘,而这正是灰度值不连续的结果,这种不连续可以利用求一阶和二阶导数检测到。

当今的局部技术边缘检测方法中,主要有一次微分(Sobel算子、Roberts算子)、二次微分(拉普拉斯算子等)和模板操作(Prewitt算子、Kirsch算子和Robinson算子)等。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像可以取得较好的效果,但对于边缘复杂(如边缘模糊、边缘丢失、边缘不连续等)的图像效果不太理想。此外,

7

噪声的存在使基于导数的边缘检测方法效果明显降低,在噪声较大的情况下所用的边缘检测算子通常都是先对图像进行适当的平滑,抑制噪声,然后求导数,或者对图像进行局部拟合,然后再用拟合光滑函数的导数来代替直接的数值导数,如Marr算子、Canny算子等。有关学者曾给出了一种基于彩色边缘的图像分割方法,这是对传统边缘分割方法只适用于灰度图像状况的一个突破。

在未来的研究中,用于提取初始边缘点的自适应阈值选取、用于图像层次分割的更大区域的选取,以及如何确认重要边缘去除假边缘将变得非常重要。 (3) 基于聚类的分割法

对灰度图像和彩色图像中相似灰度或色度合并的方法称之为聚类,通过聚类将图像表示为不同区域即所谓的聚类分割方法。此方法的实质是将图像分割问题转化为模式识别的聚 类分析,如k均值、参数密度估计、非参数密度估计等方法都能用于图像分割。常用的聚类分割有颜色聚类分、灰度聚类分割和像素空间聚类分割。颜色聚类分割实际上是将相似的几种颜色合并为一色,描述颜色近似程度的指标是色差,在标准CIE匀色空间中,色差是用两个颜色的距离来表示的。但是显示器采用的RGB空间是显示器的设备空间,与CIE系统的真实三原色不同,为简单起见,一般采用RGB色空间中的距离来表示。

灰度聚类分割就是只把图像分成目标和背景两类,而且仅考虑像素的灰度,这就是一个 在一维空间中把数据分成两类的问题。通过在灰度空间完成聚类,得到两个聚类中心(用灰度值表征),聚类中心连线的中点便是阈值。显然这个概念也可以轻松地延扩至多阈值和动 态阈值的情况。

像素空间聚类分割在某些特定的尺度上观察图像,比如说把图像信号通过一个带通滤波 器,滤波的结果将使图像的局部信息更好地被表达。通过一个多尺度分解,轮廓信息可以在大尺度图像上保留下来,细节或者突变信息可以在中小尺度上体现,基于多尺度图像特征聚类的分割方法渐渐得到了人们的关注。 (3) 函数优化法

基于函数优化的分割方法是图像分割中另一大类常用的方法,其基本思路是给出一个目标函数,通过该目标函数的极大化或极小化来分割图像,G.A.Hewer等人提出了一个具有广 泛意义的目标函数。统计学分割法、结合区域与边缘信息法、最小描述长度(MDL)法、基于贝叶斯公式的分割法等是目前几种活跃的函数优化法。

统计学分割法就是把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,且观察到的实际物体是作了某种变换并加入噪声的结果。统计学分割方法包括基于马尔科夫随机场法(MRF)、标号法(Labeling)和混合分布法(Mixture)等。

结合区域与边缘信息法是基于区域信息的图像分割的主要方法。区域增长有两种方式:一种是先将图像分割成很多一致性较强的小区域,再按一定的规则将小区域融合成大区域, 达到分割图像的目的;另一种是事先给定图像中要分割目标的一个种子区域,再在种子区域基础上将周围的像素点以一定的规则加入其中,最终达到目标与背景分离的目的。分裂合并

8

搜索更多关于: K均值算法图像分割 的文档
K均值算法图像分割.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c667ic7wvpg7916095d4f_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top