武汉理工大学《学科基础课群设计》报告书
5.1.2 晶振电路的工作原理
晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各 部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低 的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶 振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄, 所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类。
5.2 功率放大器设计
利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大
9
武汉理工大学《学科基础课群设计》报告书
信号,这现象成为三极管的放大作用。经过不断的电流放大,就完成了功率放大。
5.2.1 功率放大器原理
高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)等。这几项指标要求是互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。例如实际中有些电路,防止干扰是主要矛盾,对谐波抑制度要求较高,而对带宽要求可适当降低等。功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。放大器的工作状态可分为甲类、乙类和丙类等。为了提高放大器的工作效率,它通常工作在乙类、丙类,即晶体管工作延伸到非线性区域。
5.2.2 功率放大器分类
功率放大器可分为A类放大器、B类放大器、AB类放大器、D类放大器及T类放大器等五大类。
A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。放大器可单管工作,也可以推挽工作。由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。电路简单,调试方便。但效率较低,晶体管功耗大,功率的理论最大值仅有25%,且有较大的非线性失真。由于效率比较低 现在设计基本上不在再使用。 B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是\交越失真\较大。即当信号在-0.6V~ 0.6V之间时, Q1 Q2都无法导通而引起的。所以这类放大器也逐渐被设计师摒弃。
10
武汉理工大学《学科基础课群设计》报告书
AB类放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。可以避免交越失真。交替失真较大,可以抵消偶次谐波失真。有效率较高,晶体管功耗较小的特点。
D类放大器是一种将输入模拟音频信号或PCM数字信息变换成PWM(脉冲宽度调制)或PDM(脉冲密度调制)的脉冲信号,然后用PWM或PDM的脉冲信号去控制大功率开关器件通/断音频功率放大器,也称为开关放大器。具有效率高的突出优点:
1. 具有很高的效率,通常能够达到85%以上。 2. 体积小,可以比模拟的放大电路节省很大的空间。 3. 无裂噪声接通。
4. 低失真,频率响应曲线好。外围元器件少,便于设计调试。
T类功率放大器的功率输出电路和脉宽调制D类功率放大器相同,功率晶体管也是工作在开关状态,效率和D类功率放大器相当。它和普通D类功率放大器不同的是:1、它不是使用脉冲调宽的方法,2、它的功率晶体管的切换频率不是固定的,无用分量的功率谱并不是集中在载频两侧狭窄的频带内,而是散布在很宽的频带上, 3、T类功率放大器的动态范围更宽,频率响应平坦。
5.2.3 设计方案
方案一,采用集成芯片。现有许多高频大功率的集成放大器(如AD815)可以用来设计高频功放。集成功放具有稳定度高,需要调整的参数少的特点,缺点是效率较低(集成功放一般采用线性放大),不满足系统对功耗及传输距离的要求。 方案二,采用分立元件的功率放大器。采用分立元件的高频电路受分布参数影响大,而且不易调整,但其电路结构比较灵活,对应于不同要求的信号,可以设计不同结构的放大器以获得最大的效率,而且输出功率可以设计的较大,价格也相对低廉。采用功放管,前级的缓冲级,一是控制能量发射模块的增益,二是给提供足够的驱动功率。
方案论证:本题目要求不能采用专用芯片和模块。能量发射模块功率上限为5W,需要较大功率的功放管,故选用方案二。
11
武汉理工大学《学科基础课群设计》报告书
5.2.4功率放大器电路图
图5 采用分立元件的功率放大器
5.3 AC/DC电路方案
AC/DC(Alternating Current/Direct Current)其作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。
整流电路有半波整流、全波整流、桥式整流。半波整流电路最为简单,但是性能较全波整流和桥式整流不好。桥式整流电路与全波整流电路相比,前者电源变压器五中心抽头,结构简单,且伏安容量小。 由此可大致得到以下三种滤波整流电路方案。
方案一:采用半波整流滤波电路。半波整流电路是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻RL ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。如图6所示。
12
相关推荐: