第一范文网 - 专业文章范例文档资料分享平台

最新《高等数学(二)》专升本考试大纲

来源:用户分享 时间:2025/6/14 15:11:08 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

《高等数学(二)》专升本考试大纲

《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。考试时间为2小时,满分150分。

考试内容和基本要求 一、函数、极限与连续 (一)考试内容

函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。 (二)考试要求

1.理解函数的概念,了解函数的基本性态(奇偶性、单调性、周期性、有界性)。了解反函数的概念,理解复合函数的概念,理解初等函数的概念。会建立简单经济问题的函数关系。掌握常用的经济函数(需求函数、成本函数、收益函数、利润函数)。

2.了解数列极限、函数极限的概念(不要求做给出?,求N或?的习题);了解极限性质(唯一性、有界性、保号性)。

3.掌握函数极限的运算法则;熟练掌握极限计算方法。掌握两个重要极限,会用两个重要极限求极限;

4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。 5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。

6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。 二、导数与微分

1

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

(一)考试内容

导数的概念及求导法则;隐函数所确定函数的导数;高阶导数;微分的概念与运算法则。 (二)考试要求

1.理解导数的概念及几何意义和经济意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程。

2.掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数的求导法则;掌握隐函数及取对数求导法。会熟练求函数的导数。

3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。

4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。 三、中值定理与导数应用 (一)考试内容

罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。导数在经济上的应用(边际、弹性)。 (二)考试要求

1.了解罗尔中值定理、拉格朗日中值定理(对定理的分析证明不作要求); 2.掌握用洛必达法则求

0?, ,0??,???未定式极限的方法; 0?3.理解函数极值概念,掌握用导数判定函数的单调性和求函数极值的方法;会求经济中较简单的最大值和最小值的应用问题;

4.会用导数判断曲线的凹凸性,会求曲线的拐点。

5.理解边际与弹性的概念,会建简单实际经济问题的目标函数,会求常用经济函数的边际与弹性。

2

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

四、不定积分 (一)考试内容

原函数与不定积分概念,不定积分换元法,不定积分分部积分法。 (二)考试要求

1.理解原函数与不定积分的概念和性质;

2.掌握不定积分的基本公式、换元积分法和分部积分法(淡化特殊积分技巧的训练,对于有理函数积分的一般方法不作要求,对于一些简单有理函数可作为两类积分法的例题作适当训练)。

五、定积分及其应用 (一)考试内容

定积分的概念和性质,积分变上限函数,牛顿-莱布尼兹公式,定积分的换元积分法和分部积分法,无穷区间上的广义积分;定积分的应用—求平面图形的面积与旋转体体积。 (二)考试要求

1.理解定积分的概念,了解定积分的性质和积分中值定理。

2.了解积分变上限函数的概念和性质,掌握牛顿-莱布尼兹公式,能正确运用该公式计算定积分。

3.掌握定积分的换元法和分部积分法。

4.了解定积分的元素法,会建立简单经济问题的定积分表达式;会计算平面图形的面积和旋转体的体积。

5.理解无穷区间上广义积分的概念,会求无穷区间上的广义积分。 六、微分方程

3

最新《高等数学(二)》专升本考试大纲.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c67mti533lm9s4tl8lgrm6o2vt5lzqa00cp2_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top