第一范文网 - 专业文章范例文档资料分享平台

2019年山西省高考数学二模试卷(文科)

来源:用户分享 时间:2025/5/30 5:30:18 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题. 20.(12分)已知椭圆C:

的左、右焦点为F1,F2,左、右顶点为A1,A2.

(1)P为C上任意一点,求|PF1|?|PF2|的最大值;

(2)椭圆C上是否存在点P,使PA1,PA2与直线x=4相交于E,F两点,且|EF|=1.若存在,求点P的坐标;若不存在,请说明理由.

【分析】(1)由题意定义可知,|PF1|+|PF2|=2a=4,然后利用基本不等式求|PF1|?|PF2|的最大值;

(2)不妨设P(x0,y0)(y0>0),又A1(﹣2,0),A2(2,0),分别写出PA1,PA2的方程,求出E,F的坐标,由|EF|=1可得x0+y0=4,把x0=4﹣y0代入得

,此方程无解,可知满足条件的P点不存在.

【解答】解:(1)由题意定义可知,|PF1|+|PF2|=2a=4, ∴

∴|PF1|?|PF2|的最大值为4,当且仅当|PF1|=|PF2|时等号成立; (2)不妨设P(x0,y0)(y0>0), ∵A1(﹣2,0),A2(2,0), ∴PA1:

,令x=4,得

PA2:

,令x=4,则.

∴|EF|==.

第17页(共21页)

∴x0+y0=4, 把x0=4﹣y0代入

,得

∵△=64﹣240<0,∴满足条件的P点不存在.

【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.

21.(12分)已知函数f(x)=e﹣alnx(a∈R,a>0). (1)若a=e,求f(x)的单调区间; (2)证明:f(x)≥a(2﹣lna).

【分析】(1)a=e时,函数f(x)=e﹣elnx.x∈(0,+∞).f′(x)=(x)=xe,利用导数研究其单调性即可得出. (2)f′(x)=e﹣=点,设为x0,则x0

x

x

x

x

.令g

.由(1)可知:f(x)在x∈(0,+∞)上必有唯一零

=a.利用单调性即可证明结论.

x

【解答】(1)解:a=e时,函数f(x)=e﹣elnx.x∈(0,+∞). f′(x)=e﹣=

xx

x

令g(x)=xe,则g′(x)=(x+1)e>0, ∴函数g(x)在x∈(0,+∞)上单调递增. 又g(1)=e.

∴x∈(0,1)时,f′(x)<0,此时单调递减;x∈(1,+∞)时,f′(x)>0,此时单调递增.

∴函数f(x)的单调递减为(0,1);单调递增为(1,+∞). (2)证明:f′(x)=e﹣=

x

=a.

由(1)可知:f(x)在x∈(0,+∞)上必有唯一零点,设为x0,则x0

当x∈(0,x0)时,f′(x)<0,此时单调递减;x∈(1,+∞)时,f′(x)>0,此时单调递增. ∴f(x)≥f(x0)=由x0

=a,可得:

﹣alnx0. =

,lnx0+x0=lna.

第18页(共21页)

∴f(x)≥f(x0)=+ax0﹣alna≥2a﹣alna.

∴f(x)≥a(2﹣lna).

【点评】本题考查利用利用导数研究函数的单调性极值与最值、方程与不等式的解法、函数的零点,考查学生的运算推理能力,属于难题.

(二)选考题:共10分.请考生在第22、23、题中任选一题作答.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程](10分)

22.(10分)已知直线l的参数方程为

(t为参数),以坐标原点O为极点,

x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣2sinα﹣2cosα=0. (1)写出曲线C的直角坐标方程;

(2)若直线l与曲线C交于A,B两点,且|AB|=2,求直线l倾斜角求α的值. 【分析】(1)由ρ﹣2sinα﹣2cosα得ρ﹣2ρsinα﹣2ρcosα=0,得曲线C的直角坐标方程为 x+y﹣2x﹣2y=0;

(2)设出直线l的方程后,利用圆中的直角三角形列式可得.

【解答】解(1)由ρ﹣2sinα﹣2cosα得ρ﹣2ρsinα﹣2ρcosα=0,得曲线C的直角坐标方程为 x+y﹣2x﹣2y=0;

(2)易知直线l的斜率存在,可设直线l的方程为:kx﹣y+设圆心C(1,1)到直线了的距离为d, 由直角三角形可知2=2

,∴d=1,

k=0(k=tanα),

2

2

2

2

2

2

∴=1,解得k=0,或k=1,

∴α=0,或α=.

【点评】本题考查了简单曲线的极坐标方程,属中档题. [选修4-5:不等式选讲](10分) 23.已知函数f(x)=|x﹣1|+|x﹣m|.

(1)当m=﹣1时,画出函数y=f(x)的图象;

(2)不等式f(x)≥|2m+1|﹣2恒成立,求m的取值范围.

第19页(共21页)

【分析】(1)当m=1时,代入可得f(x)=|x﹣1|+|x+1|,讨论x的范围,结合一次函数的图象即可

(2)由绝对值不等式可得f(x)=|x﹣1|+|x﹣m|≥||m﹣1|,从而有|m﹣1|≥|2m+1|﹣2恒成立,结合含有绝对值的不等式的解法即可求解m的范围

【解答】解:(1)当m=1时,f(x)=|x﹣1|+|x+1|=

其图象如图所示,

\\(2)∵f(x)≥|2m+1|﹣2恒成立, 又∵f(x)=|x﹣1|+|x﹣m|≥||m﹣1| ∴|m﹣1|≥|2m+1|﹣2恒成立, ∴

第20页(共21页)

搜索更多关于: 2019年山西省高考数学二模试卷(文科) 的文档
2019年山西省高考数学二模试卷(文科).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c67p2d2e4mf62h6002tw881m9s40mcz00juz_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top