方法,随着测序成本的降低和测序效率的提升,未来我们希望能够将每一个突变体都能通过测序的手段来确定插入元件的插入位点,这样必然会对侧翼序列的分离和水稻功能基因的研究带来革命性的突破。 6 总结和展望
本研究利用水稻粳稻品种中花11构建了拥有15,541 个突变单株的水稻Tos17突变体库。通过对分离到的Tos17侧翼序列的分析,为Tos17插入分布有加深刻的认识。而对T1代家系的筛选证明了通过反转录转座子Tos17创建突变体和分离功能基因的可行性。本Tos17突变体库不仅能够提供新的基因标签,为饱和水稻基因组做出贡献。更能与我室T-DNA突变体库形成互补,提供等位Tos17突变体。有利于水稻功能基因的研究。
未来必将有更多的突变体的创建和侧翼序列的分离,使侧翼序列的数目能够饱和水稻的基因组,对水稻功能基因组的研究提供有效的支持,服务于2020年研究清楚水稻中每一个基因的功能这一宏伟目标
Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M and Bernardi G. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett, 2000, 471: 161-4.
Consortium R C S. In-depth view of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566-9.
Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316-20.
Francis K E and Spiker S. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J, 2005, 41: 464-77.
Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H and Kanda M. Retrotransposons of rice involved in
mutations induced by tissue culture. Proc Natl Acad Sci U S A, 1996, 93: 7783-8.
Hobbs S L, Kpodar P and DeLong C M. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol, 1990, 15: 851-64. Krishnan A, Guiderdoni E, An G, Hsing Y I, Han C D, Lee M C, Yu S M, Upadhyaya N,
Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H and Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol, 2009, 149: 165-70.
Lagerstrom M, Parik J, Malmgren H, Stewart J, Pettersson U and Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl, 1991, 1: 111-9.
Liu Y G and Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25: 674-81.
Nthangeni M B, Ramagoma F, Tlou M G and Litthauer D. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microbiol Methods, 2005, 61: 225-34.
Rosenthal A and Jones D S. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res, 1990, 18: 3095-6.
Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, et al. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420: 312-6.
Speulman E, Metz P L, van Arkel G, te Lintel Hekkert B, Stiekema W J and Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell, 1999, 11: 1853-66.
Thomas C M, Jones D A, English J J, Carroll B J, Bennetzen J L, Harrison K, Burbidge A, Bishop G J and Jones J D. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet, 1994, 242: 573-85.
Wu C, You C, Li C, Long T, Chen G, Byrne M E and Zhang Q. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A, 2008, 105: 12915-20.
相关推荐: