他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。
13.试述金属的硬化与软化现象及产生条件。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。 金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。 金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。 循环硬化和软化与σb / σs有关: σb / σs>1.4,表现为循环硬化; σb / σs<1.2,表现为循环软化;
1.2<σb / σs<1.4,材料比较稳定,无明显循环硬化和软化现象。 也可用应变硬化指数n来判断循环应变对材料的影响,n<1软化,n>1硬化。 退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。 循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。
第六章 金属的应力腐蚀和氢脆断裂
一、名词解释
1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的 低应力脆断现象。
2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。
3、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。
4、氢化物致脆:对于ⅣB 或ⅤB 族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,是金属脆化,这种现象称氢化物致脆。
5、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。 二、说明下列力学性能指标的意义
1、σscc:材料不发生应力腐蚀的临界应力。 2、KIscc:应力腐蚀临界应力场强度因子。 3、da/dt:盈利腐蚀列纹扩展速率。 7.如何识别氢脆与应力腐蚀?。
答:氢脆和应力腐蚀相比,其特点表现在:
1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。 3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。 4、氦脆断口上一般没有腐蚀产物或者其量极微。
5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。
第七章 金属的磨损与耐磨性
1.名词解释
磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。【P153】
3.粘着磨损产生的条件、机理及其防止措施
----- 又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。 磨损机理:
实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。 粘着点从软的一方被剪断转移到硬的一方金属表面,随后脱落形成磨屑
旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形成磨损过程。
改善粘着磨损耐磨性的措施 1.选择合适的摩擦副配对材料
选择原则:配对材料的粘着倾向小 互溶性小
表面易形成化合物的材料 金属与非金属配对
2.采用表面化学热处理改变材料表面状态
进行渗硫、磷化、碳氮共渗等在表面形成一层化合物或非金属层,即避免摩擦副直接接触又减小摩擦因素。
3.控制摩擦滑动速度和接触压力
减小滑动速度和接触压力能有效降低粘着磨损。 4.其他途径
改善润滑条件,降低表面粗糙度,提高氧化膜与机体结合力都能降低粘着磨损。
影响接触疲劳寿命的因素? 内因
1.非金属夹杂物
脆性非金属夹杂物对疲劳强度有害
适量的塑性非金属夹杂物(硫化物)能提高接触疲劳强度 塑性硫化物随基体一起塑性变形,当硫化物把脆性夹杂物包住形成共生夹杂物时,可以降低脆性夹杂物的不良影响。
生产上尽可能减少钢中非金属夹杂物。 2.热处理组织状态
接触疲劳强度主要取决于材料的抗剪切强度,并有一定的韧性相配合。
当马氏体含碳量在0.4~0.5w%时,接触疲劳寿命最高。 马氏体和残余奥氏体的级别
残余奥氏体越多,马氏体针越粗大,越容易产生微裂纹,疲劳强度低。 未溶碳化物和带状碳化物越多,接触疲劳寿命越低。 3.表面硬度和心部硬度
在一定硬度范围内,接触疲劳强度随硬度的升高而增加,但并不保持正比线性关系。
表面形成一层极薄的残余奥氏体层,因表面产生微量塑性变形和磨损,增加了接触面积,减
小了应力集中,反而增加了接触疲劳寿命。
渗碳件心部硬度太低,表层硬度梯度过大,易在过渡区内形成裂纹而产生深层剥落。 表面硬化层深度和残余内应力
硬化深度要适中,残余压应力有利于提高疲劳寿命。 外因
1.表面粗糙度
减少加工缺陷,降低表面粗糙度,提高接触精度,可以有效增加接触疲劳寿命。 接触应力低,表面粗糙度对疲劳寿命影响较大 接触应力高,表面粗糙度对疲劳寿命影响较小 2.硬度匹配
两个接触滚动体的硬度和装配质量等都应匹配适当。
相关推荐: