最新全国中考试卷
实数及其运算
基础知识
知识点一、实数的概念及分类 1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数
无理数 无限不循环小数 负无理数 2、无理数
在理解无理数时,要抓住“无限不循环”这一要点,归纳起来有四类: (1)开方开不尽的数,如7,32等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等 知识点二、实数的倒数、相反数和绝对值 1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。 2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
π+8等; 3文库最新精品中考试卷,推荐下载 1
最新全国中考试卷
知识点三、平方根、算数平方根和立方根 1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a的平方根记做“?2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作“a”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a?0) 。 a”
a?0
a2?a? ;注意a的双重非负性: -a(a<0) a?0 3、立方根
如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:3?a??3a,这说明三次根号内的负号可以移到根号外面。 知识点四、科学记数法和近似数 1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。 2、科学记数法
把一个数写做?a?10的形式,其中1?a?10,n是整数,这种记数法叫做科学记数法。 知识点五、实数大小的比较 1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法
n文库最新精品中考试卷,推荐下载 2
最新全国中考试卷
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,
a?b?0?a?b,a?b?0?a?b,a?b?0?a?b
(3)求商比较法:设a、b是两正实数,
aaa?1?a?b;?1?a?b;?1?a?b; bbb(4)绝对值比较法:设a、b是两负实数,则a?b?a?b。 (5)平方法:设a、b是两负实数,则a2?b2?a?b。 知识点六、实数的运算
1、加法交换律 a?b?b?a
2、加法结合律 (a?b)?c?a?(b?c) 3、乘法交换律 ab?ba 4、乘法结合律 (ab)c?a(bc) 5、乘法对加法的分配律 a(b?c)?ab?ac 6、实数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 重点例题分析 例1. 一5的绝对值是 A. 5 B.
115 C. -5 D. -5 文库最新精品中考试卷,推荐下载 3
最新全国中考试卷
例4.计算(﹣3)+(﹣9)的结果等于( )
12 A.答案:B
解析:(﹣3)+(﹣9)=﹣12;
例5. 吉首至怀化的高速公路2012年12月23日顺利通车后,赴凤凰古城游玩的游客越来越多.据统计,今年春节期间,凤凰古城接待游客约为210000人,其中210000人用科学记数法表示为 人.
B. ﹣12 C. 6 D. ﹣6 例6.计算:|﹣|+(2013﹣)﹣()﹣2sin60°.
0﹣1
文库最新精品中考试卷,推荐下载 4
相关推荐: