(2) 循环系统溶液温度的影响:若循环系统溶液的温度过高 ,则气体的溶解度降低,不利于吸氧和栲胶液的再生,且副反应加剧;若循环系统温度低则H2S 的吸收和析硫反应速度降低,脱硫效率差,因此,溶液温度应控制在38~50℃为宜。 Ⅴ、液位的影响
(1) 脱硫塔底部液位的影响 脱硫塔底部液位应以系统中的溶液量及循环量为依据,若脱硫塔底液位过低,则易造成气泡夹带,使富液泵不打量;若塔底液位过高,则塔底部空间过小,影响脱硫效果,且易造成满液,因此,应将塔底部液位控制在液位显示的 50 %~60 %为宜。
(2) 循环槽液位的影响 循环槽液位可根据循环系统中的溶液量及再生槽和脱硫塔等设备内的液位,溶液循环量进行控制,一般情况下以不低于液位显示的 50 %及不高于循环槽放空管口为宜,以保证贫液泵正常工作及避免循环槽内形成真空。 3.3.2 影响溶液再生的因素
溶液的再生是将富液(吸收H2S后的栲胶溶液)变成贫液 (再生后的栲胶溶液) 的过程,主要是T(OH)3被O2氧化成T(OH)O2过程。影响栲胶再生的主要因素有再生温度 ,再生压力,再生槽液位,再生空气量及再生时间。
Ⅰ、温度的影响 温度高再生速度加快,但副产物增多,硫泡沫发粘,不易分离,且氧溶解度降低,所以应控制溶液温度在 35 ±5 ℃。
Ⅱ、再生压力的影响 再生槽溶液喷射压力是根据再生槽内硫泡沫的形成和栲胶的氧化情况进行控制的。喷头的开关个数决定了喷射压力的高低,喷射压力越高则空气吸入越多,栲胶再生效果越好,泡沫越易形成,一般不应低于 0.13MPa。另外要注意将所开喷头分散开,尽量保证喷射均匀,以增大反应面积。
Ⅲ、再生槽液位的影响 再生槽液位是根据再生槽硫泡沫层的厚度和循环系统的液位来进行控制的,通过调节再生槽上液位调节器平衡管的高度调节液位高低。若液位过高 ,则会出现溶液溢流过多,跑液严重,影响正常生产;若液位调节过低 ,则硫泡沫无法溢流 ,随溶液一起进入脱硫塔内,使塔阻升高,不能正常生产。通常以硫泡沫能均匀溢流、泡沫层厚度适宜为基准进行调节。
Ⅳ、再生时间与再生空气量 再生时间长,则再生空气量大,有利于将还原态栲胶氧化成氧化态栲胶。但是再生时间过长,溶液循环量要减小,有可能导致吸收不好,使脱硫塔出
16
口气体H2S超标 (H2S ≤2mg/ m3),同时再生空气多,副反应加快,一般可根据煤气量相应地调节再生时间与空气量。 3.4 工艺条件的确定 3.4.1 溶液的组成
根据反应机理、吸收速度以及硫负荷来看,主要由碱液浓度和钒酸盐浓度决定,也就是由栲胶浓度决定,一般都是根据钒酸盐的变化和硫化氢的脱除效率来调整溶液组分和pH值。碱度过高吸收硫化氢过多,钒可能会过度还原。实际上V4+不可能被栲胶降解及时氧化成V5+,当pH>9时,可能会造成V4+的沉淀,引起钒的损失,因此总碱度不宜过高。
pH值对硫化氢吸收和其氧化成元素硫有着相反影响。过高PH值会加大生成硫代硫酸的反应速度。实验证实,脱硫传质过程中,当pH>9时,认为传质过程为气膜控制,pH在8.6~8.9之间时,液膜阻力很明显,pH<8.6时,液膜阻力更加增大,因此pH值宜控制在8.5~9.0之间,栲胶脱硫和ADA一样,在氧化反应中是有氢离子参加的,氢离子的浓度对氧化反应还原电位是有很大影响的,在不同pH条件下,栲胶的氧化还原性能可能是不相同的,因此必须严格控制溶液的pH值。
由于栲胶脱硫溶液是多种氧化还原物质的混合体,电位值又是该混合体氧化还原性的综合体现。因此测量溶液电位尤为重要。溶液电位除与测量溶液的标准电极电位有关外,主要与溶液中各种氧化态和还原态物质的浓度有关。溶液的电位表明溶液的氧化还原能力的大小,反映溶液再生系统溶液再生的好坏,一般控制溶液的电位值在-180mV左右。
3.4.2 喷淋密度和液气比的控制
实验证明在pH较高条件下,加大脱硫塔内的气流速度即增加气量可提高传质系数。而pH值较低时加大溶液量即增大喷淋密度可明显增加脱除硫化氢量。当负荷较低时,喷淋密度影响较小,说明液气比对吸收效果是有影响的,因此,根据生产过程的气量,及时调节溶液循环量,控制喷淋密度和液气比在适宜范围内是非常必要的。适当的液气比一方面可保证气体净化度,防止溶液中NaHS浓度过高而产生硫—氧—钒沉淀,另一方面是使其动力消耗不会增得过高,而致提高生产成本,适宜的液气比
17
在设计中已经确定。 3.4.3 温度
提高反应温度可加快反应速度,对吸收和再生都有利,冬天温度过底生成硫磺的粒子细,硫泡沫很难捕集,所以在喷射再生槽前设有溶液加热器调节溶液温度。但是温度过高,大于50℃就会加快硫代硫酸盐的生成,造成溶液对设备管道的腐蚀。温度超过60℃以后,硫代硫酸盐的生成速度急剧上升。
为使吸收、再生和析硫三者都能顺利进行,溶液温度宜控制在35~45℃。 3.4.4再生空气量
空气的作用是供氧和形成捕集硫粒的气泡。按2H2S+O2=2H2O+S计算,每公斤硫需要1.67M3空气,采用喷射再生的空气量可能要少一些,主要是在喉管中气液接触好,反应激烈,接触时间也少得多,一般再生时间需要30min以上,由于采用喷射再生,12min就满足了工艺要求,但吹风强度大,达到136m3/(㎡·h)。故空气量不宜过大,过大会招致空气中的O2与溶液反应,生成硫代硫酸盐和硫酸盐,使碱耗增加,硫酸盐的积累会造成溶液酸性,导致对设备及管道的腐蚀。
18
4. 物料衡算和热量衡算
4.1 物料衡算[6-10] 1 基础数据 组分 体积/%
N2 19.55
表4.1 半水煤气成分 CO2 8.77
CO 27.82
H2 43.45
O2 0.4
表4.2 脱硫液成分 组分 浓度(g/L)
Na2CO3 5.0
NaHCO3 50.6
总碱 26.8
总钒 0.6
栲胶 1.5
⑶ 半水煤气中硫化氢含量 C1=711 mg/m3 ⑷ 净化气中硫化氢含量 C2=1.5mg/m3 ⑸ 入洗涤塔的半水煤气的温度 t1=60℃
⑹ 出洗涤塔入脱硫塔的半水煤气的温度 t2=45℃ ⑺ 出脱硫塔半水煤气的温度 t3=41℃
⑻ 入脱硫塔半水煤气的压力 P=0.125MPa(绝压) 2 计算原料气的体积及流量
以每年300个工作日,每天工作24小时,则每小时生产合成氨为:
60000÷(300×24)=8.33 t/h
考虑到在合成时的损失,则以每小时生产8.36吨计算为基准,所以
nNH=8360 Kg÷17Kg/Kmol=491.76 Kmol
3
则合成NH3所需要N2的物质的量为
nN= nNH÷2=245.88Kmol
2
3
考虑到半水煤气经过洗涤、脱硫、变换等工序到合成的过程中氮气的损失,则损失率以1%计,则半水煤气中氮气的物质的量为
nN
2
=245.88×(1+1%)=248.34 Kmol
19
相关推荐: