第一范文网 - 专业文章范例文档资料分享平台

圆锥曲线与方程教案设计

来源:用户分享 时间:2025/11/6 18:40:32 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

富县高级中学集体备课教案

年级:高二 科目:数学 授课人: 椭圆及其标准方程 课 题 第 1 课时 1、 了解椭圆的实际背景,掌握椭圆的定义及其标准方程。 2、 通过椭圆的概念引入椭圆的标准方程的推导,培养学生的分析探索能力,三维目标 熟练掌握解决解析问题的方法—坐标法。 3、通过对椭圆的定义及标准方程的学习,渗透数形结合的思想,让学生体会运动变化、对立统一的思想,提高对各种知识的综合运用能力. 重 点 难 点 椭圆的定义和椭圆的标准方程 椭圆的标准方程的推导. 中心发言人 周鹏 教 具 教 法 教 学 过 程

课 型 学 法 常规课 课时安排 --1 -课时 个人主页 (一)椭圆概念的引入 取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就 可以画出一个椭圆. 教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等…… 1

在此基础上,引导学生概括椭圆的定义: 平面到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距. 学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调: (1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面”. (2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<| F1F2 |,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于| F1F2 |”. (二)椭圆标准方程的推导 1.标准方程的推导 由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程. 2

如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤. (1)建系设点 建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的. 以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设| F1F2 |=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0). (2)点的集合 由定义不难得出椭圆集合为P={M||MF1|+|MF2|=2a}. (3)代数方程 3

(4)化简方程(学生板演,教师点拨) 2.两种标准方程的比较(引导学生归纳) 0)、F2(c,0),这里c2=a2-b2; -c)、 F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到. 教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. (三)例题讲解 例、平面两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程. 分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系. ∵2a=10,2c=8. ∴a=5,c=4,b2=a2-c2=25-16=9.∴b=3 因此,这个椭圆的标准方程是 4

搜索更多关于: 圆锥曲线与方程教案设计 的文档
圆锥曲线与方程教案设计.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6e95p5ujo85v45r56fo51lh1d7s0l100983_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top