第一范文网 - 专业文章范例文档资料分享平台

2019年河南省中考数学试题(解析版)

来源:用户分享 时间:2025/5/28 23:54:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围. (4)得出结论

若能生产出面积为4的矩形模具,则周长m的取值范围为 m≥8 .

【分析】(1)x,y都是边长,因此,都是正数,即可求解; (2)直接画出图象即可;

(3)①把点(2,2)代入y=﹣x+即可求解;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+并整理得:x﹣mx+4=0,即可求解; (4)由(3)可得.

【解答】解:(1)x,y都是边长,因此,都是正数, 故点(x,y)在第一象限, 答案为:一; (2)图象如下所示:

2

(3)①把点(2,2)代入y=﹣x+得:

2=﹣2+,解得:m=8;

②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y=和y=﹣x+并整理得:x﹣mx+4=0, △=m﹣4×4≥0时,两个函数有交点, 解得:m≥8;

(4)由(3)得:m≥8.

【点评】本题为反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解,一般难度不大.

22.(10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP. (1)观察猜想 如图1,当α=60°时,(2)类比探究

如图2,当α=90°时,请写出说明理由. (3)解决问题

当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时

的值.

的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形的值是 1 ,直线BD与直线CP相交所成的较小角的度数是 60° .

2

2

【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即可解决问题.

(2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△PAC,即可解决问题. (3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.

②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题.

【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.

∵∠PAD=∠CAB=60°, ∴∠CAP=∠BAD, ∵CA=BA,PA=DA, ∴△CAP≌△BAD(SAS), ∴PC=BD,∠ACP=∠ABD, ∵∠AOC=∠BOE, ∴∠BEO=∠CAO=60°, ∴

=1,线BD与直线CP相交所成的较小角的度数是60°,

故答案为1,60°.

(2)如图2中,设BD交AC于点O,BD交PC于点E.

∵∠PAD=∠CAB=45°, ∴∠PAC=∠DAB, ∵

∴△DAB∽△PAC, ∴∠PCA=∠DBA,∵∠EOC=∠AOB,

∴∠CEO=∠OABB=45°,

∴直线BD与直线CP相交所成的小角的度数为45°.

(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.

∵CE=EA,CF=FB, ∴EF∥AB,

∴∠EFC=∠ABC=45°, ∵∠PAO=45°, ∴∠PAO=∠OFH, ∵∠POA=∠FOH, ∴∠H=∠APO,

∵∠APC=90°,EA=EC, ∴PE=EA=EC,

∴∠EPA=∠EAP=∠BAH, ∴∠H=∠BAH, ∴BH=BA,

∵∠ADP=∠BDC=45°, ∴∠ADB=90°, ∴BD⊥AH,

∴∠DBA=∠DBC=22.5°, ∵∠ADB=∠ACB=90°, ∴A,D,C,B四点共圆,

∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°, ∴∠DAC=∠DCA=22.5°,

搜索更多关于: 2019年河南省中考数学试题(解析版) 的文档
2019年河南省中考数学试题(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6egho0jqjm3h0qq02ukg7f1wl0k4bu014zw_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top