实验五 自动控制系统的稳定性和稳态误差分析
一、实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。
二、实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为
G(s)?0.2(s?2.5),用MATLAB编写程序来判断闭环系统的稳定性,
s(s?0.5)(s?0.7)(s?3)并绘制闭环系统的零极点图。
在MATLAB命令窗口写入程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den
dens=poly2str(dc{1},'s') 运行结果如下: dens=
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5
dens是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,4.2,3.95,1.25,0.5]
p=roots(den) 运行结果如下:
p =
-3.0058 -1.0000 -0.0971 + 0.3961i
-0.0971 - 0.3961i
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc)
[z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下:
z = -2.5000 p =
-3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k =
0.2000
输出零极点分布图如图3-1所示。
图3-1 零极点分布图
(2)已知单位负反馈控制系统的开环传递函数为
G(s)?k(s?2.5),当取k=1,10,100用MATLAB编写程序来判断
s(s?0.5)(s?0.7)(s?3)闭环系统的稳定性。
只要将(1)代码中的k值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k变化对系统稳定性的影响。
K=1 k=10 k=100
2、稳态误差分析
(1)已知如图3-2所示的控制系统。其中G(s)?s?5,试计算当输入
s2(s?10)为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。
图3-2 系统结构图
从Simulink图形库浏览器中拖曳Sum(求和模块)、Pole-Zero(零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。图中,Pole-Zero(零极点)模块建立G(s),信号源选择Step(阶跃信号)、Ramp(斜坡信号)和基本模块构成的加速度信号。为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。
图3-3 系统稳态误差分析仿真框图
信号源选定Step(阶跃信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-4所示。
图3-4 单位阶跃输入时的系统误差
信号源选定Ramp(斜坡信号),连好模型进行仿真,仿真结束后,双击示
相关推荐: