第一范文网 - 专业文章范例文档资料分享平台

线性系统的稳定性和稳态误差分析

来源:用户分享 时间:2025/8/18 14:34:56 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

实验五 自动控制系统的稳定性和稳态误差分析

一、实验目的

1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。

二、实验任务

1、稳定性分析

欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。

(1)已知单位负反馈控制系统的开环传递函数为

G(s)?0.2(s?2.5),用MATLAB编写程序来判断闭环系统的稳定性,

s(s?0.5)(s?0.7)(s?3)并绘制闭环系统的零极点图。

在MATLAB命令窗口写入程序代码如下: z=-2.5

p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den

dens=poly2str(dc{1},'s') 运行结果如下: dens=

s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5

dens是系统的特征多项式,接着输入如下MATLAB程序代码:

den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下:

p =

-3.0058 -1.0000 -0.0971 + 0.3961i

-0.0971 - 0.3961i

p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。

下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5

p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc)

[z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下:

z = -2.5000 p =

-3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k =

0.2000

输出零极点分布图如图3-1所示。

图3-1 零极点分布图

(2)已知单位负反馈控制系统的开环传递函数为

G(s)?k(s?2.5),当取k=1,10,100用MATLAB编写程序来判断

s(s?0.5)(s?0.7)(s?3)闭环系统的稳定性。

只要将(1)代码中的k值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k变化对系统稳定性的影响。

K=1 k=10 k=100

2、稳态误差分析

(1)已知如图3-2所示的控制系统。其中G(s)?s?5,试计算当输入

s2(s?10)为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。

图3-2 系统结构图

从Simulink图形库浏览器中拖曳Sum(求和模块)、Pole-Zero(零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。图中,Pole-Zero(零极点)模块建立G(s),信号源选择Step(阶跃信号)、Ramp(斜坡信号)和基本模块构成的加速度信号。为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。

图3-3 系统稳态误差分析仿真框图

信号源选定Step(阶跃信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-4所示。

图3-4 单位阶跃输入时的系统误差

信号源选定Ramp(斜坡信号),连好模型进行仿真,仿真结束后,双击示

搜索更多关于: 线性系统的稳定性和稳态误差分析 的文档
线性系统的稳定性和稳态误差分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6eyp46gr2f92i2o9mdd4_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top