62.【2014年山东卷(理19)】
解:(I)d?2,S1?a1,S2?2a1?d,S4?4a1?6d,
2?S1,S2,S4成等比?S2?S1S4
解得a1?1,?an?2n?1 (II)bn?(?1)n?14n11?(?1)n?1(?)
anan?12n?12n?1111111111当n为偶数时,Tn?(1?)?(?)?(?)????(?)?(?)335572n?32n?12n?12n?112n ?Tn?1??2n?12n?1111111111当n为奇数时,Tn?(1?)?(?)?(?)????(?)?(?)335572n?32n?12n?12n?112n?2 ?Tn?1??2n?12n?1?2n,n为偶数??2n?1 ?Tn??2n?2?,n为奇数?2n?1?
63.【2014年全国新课标Ⅰ(理17)】
【解析】:(Ⅰ)由题设anan?1??Sn?1,an?1an?2??Sn?1?1,两式相减
an?1?an?2?an???an?1,由于an?0,所以an?2?an?? …………6分
(Ⅱ)由题设a1=1,a1a2??S1?1,可得a2??1?1,由(Ⅰ)知a3???1 假设{an}为等差数列,则a1,a2,a3成等差数列,∴a1?a3?2a2,解得??4; 证明??4时,{an}为等差数列:由an?2?an?4知
数列奇数项构成的数列?a2m?1?是首项为1,公差为4的等差数列a2m?1?4m?3 令n?2m?1,则m?n?1,∴an?2n?1(n?2m?1) 2数列偶数项构成的数列?a2m?是首项为3,公差为4的等差数列a2m?4m?1
令n?2m,则m?n,∴an?2n?1(n?2m) 2∴an?2n?1(n?N*),an?1?an?2
因此,存在存在??4,使得{an}为等差数列. ………12分
相关推荐: