第一范文网 - 专业文章范例文档资料分享平台

(湖南专版)2020年中考数学复习第三单元函数及其图象课时训练10平面直角坐标系与函数

来源:用户分享 时间:2025/6/1 10:42:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(湖南专版)2020年中考数学复习第三单元函数及其图象课时训练10平面直角坐标系与函数课时训练(十) 平面直角坐标系与函数

(限时:35分钟)

|夯实基础|

1.[2019·常德]点(-1,2)关于原点的对称点的坐标是 ( ) A.(-1,-2) C.(1,2)

B.(1,-2)

D.(2,-1)

**······**2.[2019·黄冈]已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1) C.(2,5)

B.(-2,1) D.(2,-3)

3.[2019·甘肃]已知点P(m+2,2m-4)在x轴上,则点P的坐标是 ( ) A.(4,0) C.(-4,0)

B.(0,4)

D.(0,-4)

4.[2019·眉山]函数y=A.x≥-2且x≠1

√??+2中自变量??-1

x的取值范围是 ( )

C.x≠1

D.-2≤x<1

B.x≥-2

5.[2019·资阳]爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图象中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系的是

( )

**······**

图K10-1

6.[2019·泸州]在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a+b的值是 . 7.[2019·常州]平面直角坐标系中,点P(-3,4)到原点的距离是 .

8.[2019·福建]在平面直角坐标系xOy中,?OABC的三个顶点分别为O(0,0),A(3,0),B(4,2),则其第四个顶点

**······**C的坐标是 . **······*9.[2019·济宁]已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标: . **······**1

10.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红方“马”走完“马3进4”后到达B点,则表示B点位置的数对是 . **······**

图K10-2

11.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值. (1)A,B两点关于y轴对称; (2)A,B两点关于原点对称; (3)AB∥x轴;

(4)A,B两点在第一、三象限的角平分线上.

12.[2018·南宁]如图K10-3,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是

A(1,1),B(4,1),C(3,3).**······**(1)将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1; (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2; (3)判断以O,A1,B为顶点的三角形的形状.(不需要说明理由)

图K10-3

2

13.[2018·舟山]小红帮弟弟荡秋千(如图K10-4① ),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图② 所示.**······**(1)根据函数的定义,请判断变量h是不是关于t的函数? (2)结合图象回答:

① 当t=0.7 s时,h的值是多少?并说明它的实际意义; ② 秋千摆动第一个来回需多长时间?

图K10-4

|拓展提升|

14.[2019·河北]勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图K10-5(单位:km).笔直铁路经过A,B两地.**······**(1)A,B两地间的距离为 km;

(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D两地间的距离为 km. **······**

图K10-5

15.[2019·郴州]若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y={列表:

-??(??≤-1),

2

的图象与性质.|??-1|(??>-1)

**······**x … -3 -2 -2 -2 -1 -2 0 1 2 3 …

531

1

23252

3

y …

2

3443113

1 2 1 0 1 2 … 532222

描点:在平面直角坐标系中,以自变量 x的取值为横坐标,以相应的函数值 y 为纵坐标,描出相应的点,如图K10-6所示.**······**

图K10-6

(1)在平面直角坐标系中,观察描出的这些点的分布,作出函数图象. (2)研究函数,并结合图象与表格,回答下列问题:

① 点A(-5,y1),B-2,y2,Cx1,2,D(x2,6)在该函数图象上,则 y1 y2 , x1 x2;(填“>”“=”或“<”)

**······**75

② 当函数值y=2 时,求自变量 x 的值;

③在直线x=-1的右侧的函数图象上有两个不同的点 P(x3,y3 ),Q(x4,y4 ),且y3=y4 ,求 x3+x4的值;④若直线 y=a 与函数图象有三个不同的交点,求 a 的取值范围.

**······**4

(湖南专版)2020年中考数学复习第三单元函数及其图象课时训练10平面直角坐标系与函数.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6fka81ro0d8xswm2yhl07916095eiv009em_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top