第一范文网 - 专业文章范例文档资料分享平台

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解

来源:用户分享 时间:2025/5/25 21:37:29 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

www.czsx.com.cn

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解

撰稿:孙景艳 责编:赵炜

【学习目标】

1.理解不等式的有关概念,掌握不等式的三条基本性质;

2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法; 3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组; 4.会根据题中的不等关系建立不等式(组),解决实际应用问题;

5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.

【知识网络】

【要点梳理】 要点一、不等式

1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式. 要点诠释:

(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.

(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 解集的表示方法一般有两种:一种是用最简的不等式表示,例如x?a,x?a等;另一种是用数轴表示,如下图所示:

(3)解不等式:求不等式的解集的过程叫做解不等式. 2. 不等式的性质:

- 1 -

www.czsx.com.cn

不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.

用式子表示:如果a>b,那么a±c>b±c

不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

用式子表示:如果a>b,c>0,那么ac>bc(或

ab?). cc不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.

用式子表示:如果a>b,c<0,那么ac<bc(或

要点二、一元一次不等式

1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,

要点诠释:ax+b>0或ax+b<0 (a≠0)叫做一元一次不等式的标准形式. 2.解法:

解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.

要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.

3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:

(1)审:认真审题,分清已知量、未知量; (2)设:设出适当的未知数;

(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;

(4)列:根据题中的不等关系,列出不等式; (5)解:解出所列的不等式的解集; (6)答:检验是否符合题意,写出答案. 要点诠释:

列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组

关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组. 要点诠释:

(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.

ab?). cc - 2 -

www.czsx.com.cn

(2)解不等式组:求不等式组解集的过程,叫做解不等式组.

(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.

(4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案. 【典型例题】 类型一、不等式

1.用适当的符号语言表达下列关系. (1)a与5的和是正数. (2)b与-5的差不是正数. (3)x的2倍大于x. (4)2x与1的和小于零. (5)a的2倍与4的差不少于5. 【答案与解析】

解:(1)a+5>0;(2)b-(-5)≤0; (3)2x>x; (4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于…… 举一反三:

【变式】用适当的符号语言表达下列关系:

111与3的差是负数.(2)x的与3的差大于2.(3)b的与c的和不大于9. 222111【答案】(1)y?3?0; (2)x?3?2;(3)b?c?9.

222(1)y的

2.用适当的符号填空:

(1)如果a. (2)<;<;<. 【解析】

(1)在不等式a

11b__b. 22 - 3 -

www.czsx.com.cn

在不等式a

在a

111b,合并得a??b. 222【总结升华】刚开始在面对不等式的基本变形时,要不断强化在变形上所运用的具体性质,同时也要逐步积累一些运用性质变形后的化简结果,这样学习到的不等式的基本性质才能落在实处. 举一反三:

【变式1】用适当的符号填空:

(1)7a+6__7a-6;(2)若ac>bc,且c<0,则a b. 【答案】(1)>;(2)>.

【高清课堂:一元一次不等式章节复习 410551 例1】 【变式2】判断:

22(1)如果a?b,那么ac?bc;

22(2)如果ac?bc,那么a?b.

【答案】(1)×;(2)√. 类型二、一元一次不等式

3. 解不等式x?3(x?1)x?5?1? 82【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号. 【答案与解析】

解:去分母,得8x+3 (x+1)>8-4(x-5), 去括号,得8x+3x+3>8-4x+20, 移项,得8x+3x+4x>8+20-3,

合并同类项,得15x>25, 系数化为1.得x?5. 3 - 4 -

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6gtpk46m3s01k8200spb_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top