第一范文网 - 专业文章范例文档资料分享平台

2019届高三模拟考试数学试卷(有答案)

来源:用户分享 时间:2025/10/1 10:50:34 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019届高三模拟考试试卷

数 学

(满分160分,考试时间120分钟)

参考公式:样本数据x1,x2,…,xn的方差 一、填空题:本大题共14小题,每小题5分,共70分.

1. 已知集合A={0,1,2,3},B={x|0

3. 已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为 W. 4. 运行如图所示的伪代码,则输出的结果S为 W. I←1

While I<8 I←I+2 S←2I+3 End While Print S

(第4题)

a

5. 若从2,3,6三个数中任取一个数记为a,再从剩余的两个数中任取一个数记为b,则“是

b

整数”的概率为 W.

y2

22

6. 若抛物线y=2px(p>0)的焦点与双曲线x-=1的右焦点重合,则实数p的值为

3

W.

1

7. 在等差数列{an}中,若a5=,8a6+2a4=a2,则{an}的前6项和S6的值为 W.

2

8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W.

9. 已知a,b∈R,函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上是减函数,则关于x的不等式f(2-x)>0的解集为 W.

11

10. 已知a>0,b>0,且a+3b=-,则b的最大值为 W.

ba

π

11. 将函数f(x)=sin 2x的图象向右平移个单位长度得到函数g(x)的图象,则以函数f(x)与g(x)

6

的图象的相邻三个交点为顶点的三角形的面积为 W.

→3→

12. 在△ABC中,AB=2,AC=3,∠BAC=60°,P为△ABC所在平面内一点,满足CP=PB2

→→→

+2PA,则CP·AB的值为 W.

13. 在平面直角坐标系xOy中,已知圆C1:x2+y2+2mx-(4m+6)y-4=0(m∈R)与以C2(-2,

2-x2=y2-y2,3)为圆心的圆相交于A(x1,y1),B(x2,y2)两点,且满足x1221则实数m的值为 W.

14. 已知x>0,y>0,z>0,且x+3y+z=6,则x3+y2+3z的最小值为 W.

二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.

15. (本小题满分14分)

1

π2

在△ABC中,sin A=,A∈(,π).

32

(1) 求sin 2A的值;

1

(2) 若sin B=,求cos C的值.

3

16. (本小题满分14分)

如图,在直三棱柱ABCA1B1C1中,D,E,F分别是B1C1,AB,AA1的中点. (1) 求证:EF∥平面A1BD;

(2) 若A1B1=A1C1,求证:平面A1BD⊥平面BB1C1C.

2

17. (本小题满分14分)

如图,某公园内有两条道路AB,AP,现计划在AP上选择一点C,新建道路BC,并把△ABC

π

所在的区域改造成绿化区域.已知∠BAC=,AB=2 km.

6

(1) 若绿化区域△ABC的面积为1 km2,求道路BC的长度;

(2) 若绿化区域△ABC改造成本为10万元/km2,新建道路BC成本为10万元/km.设∠ABC=2π

θ(0<θ≤),当θ为何值时,该计划所需总费用最小?

3

18. (本小题满分16分)

x2y22

如图,在平面直角坐标系xOy中,已知椭圆C:2+2=1(a>b>0)的离心率为,且右焦点到

ab2

右准线l的距离为1.过x轴上一点M(m,0)(m为常数,且m∈(0,2))的直线与椭圆C交于A,B两点,与l交于点P,D是弦AB的中点,直线OD与l交于点Q.

(1) 求椭圆C的标准方程;

(2) 试判断以PQ为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.

19. (本小题满分16分)

已知函数f(x)=(x-a)ln x(a∈R).

(1) 若a=1,求曲线y=f(x)在点(1,f(1))处的切线的方程; (2) 若对于任意的正数x,f(x)≥0恒成立,求实数a的值; (3) 若函数f(x)存在两个极值点,求实数a的取值范围.

3

20. (本小题满分16分)

已知数列{an}满足对任意的n∈N*,都有an(qnan-1)+2qnanan+1=an+1(1-qnan+1),且an+1+an

≠0,其中a1=2,q≠0.记Tn=a1+qa2+q2a3+…+qn1an.

(1) 若q=1,求T2 019的值;

(2) 设数列{bn}满足bn=(1+q)Tn-qnan. ①求数列{bn}的通项公式;

②若数列{cn}满足c1=1,且当n≥2时,cn=2bn-1-1,是否存在正整数k,t,使c1,ck-c1,ct-ck成等比数列?若存在,求出所有k,t的值;若不存在,请说明理由.

2019届高三模拟考试试卷

数学附加题

(满分40分,考试时间30分钟)

21. 【选做题】在A,B,C三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.

A. (选修42:矩阵与变换)

01?20???已知矩阵A=??,B=??,求A-1B. ?23??18?

B. (选修44:坐标系与参数方程)

在极坐标系中,曲线C:ρ=2cos θ.以极点为坐标原点,极轴为x轴非负半轴建立平面直角坐标系xOy,设过点A(3,0)的直线l与曲线C有且只有一个公共点,求直线l的斜率.

C. (选修45:不等式选讲) 已知函数f(x)=|x-1|.

(1) 解不等式f(x-1)+f(x+3)≥6;

b

(2) 若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().

a

4

【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.

22. 如图,在三棱锥DABC中,DA⊥平面ABC,∠CAB=90°,且AC=AD=1,AB=2,E为BD的中点.

(1) 求异面直线AE与BC所成角的余弦值; (2) 求二面角ACEB的余弦值.

1*

23. 已知数列{an}满足a1=,an+1=-2a2n+2an,n∈N. 3

1

(1) 用数学归纳法证明:an∈(0,);

2

1

(2) 令bn=-an,求证:

2

5

搜索更多关于: 2019届高三模拟考试数学试卷(有答案) 的文档
2019届高三模拟考试数学试卷(有答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6h9fi20il20sr9z0p01l1xu1x81dzc00o3m_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top