第一范文网 - 专业文章范例文档资料分享平台

2019中考数学压轴题分类复习之抛物线与四边形的综合问题

来源:用户分享 时间:2025/5/25 18:19:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019中考数学压轴题分类复习之抛物线与四边形的综合问题

例题:如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分

(1)求过A,B,E三点的抛物线的解析式; (2)求证:四边形AMCD是菱形;

(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.

分析:(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式; (2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;

(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标. (1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上, 则MA=MB=MC=ME=2, 又∵CO⊥MB, ∴MO=BO=1,

∴A(﹣3,0),B(1,0),E(﹣1,﹣2), 抛物线顶点E的坐标为(﹣1,﹣2), 设函数解析式为y=a(x+1)2﹣2(a≠0) 把点B(1,0)代入y=a(x+1)2﹣2, 解得:a=,

故二次函数解析式为:y=(x+1)2﹣2;

(2)证明:连接DM, ∵△MBC为等边三角形, ∴∠CMB=60°, ∴∠AMC=120°, ∵点D平分弧AC,

∴∠AMD=∠CMD=∠AMC=60°, ∵MD=MC=MA,

∴△MCD,△MDA是等边三角形, ∴DC=CM=MA=AD,

∴四边形AMCD为菱形(四条边都相等的四边形是菱形); (3)解:存在. 理由如下:

设点P的坐标为(m,n) ∵S△ABP=AB|n|,AB=4 ∴×4×|n|=5, 即2|n|=5, 解得:n=±, 当

时,(m+1)﹣2=,

2

解此方程得:m1=2,m2=﹣4

即点P的坐标为(2,),(﹣4,), 当n=﹣时,(m+1)2﹣2=﹣, 此方程无解,

故所求点P坐标为(2,),(﹣4,).

同步练习

1.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,

(1)求经过A、B、C三点的抛物线的解析式;

(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

2019中考数学压轴题分类复习之抛物线与四边形的综合问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6i3p451ntf5136q5t3t485bn78ar7y00cg7_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top