?
P
a
1 22a 3a 4a 5a 6a 7a 8a 9a 10a
1 22121 321 421 521 621 721 821 921 92 ???7分
111?2????9??10)a, ???8分 222929111令S??1?2?2???9?9, ?(1)
22211111则S?2?1?3?2???9?8?10?9, ?(2) 2222211111由(1)-(2)得S??2???9?10?9,
222221111所以S?1??2???8?9?9, ???11分
2222所以E??(?1?所以E???1???111111???1?2???8?9?9?9?10?a??1????9?a 222222???211010231??2a(元). ???13分Ks5u ?a?2?1?10?a?1512?2?1?21?
4解:(Ⅰ)证法一:∵AA1?面ABC,∴AA1?AC,AA1?AB. 又∵AA1?AC,∴四边形AAC11C是正方形, ∴AC1?AC1. ???1分
∵AB?AC,AB?AA1,AA1,AC?平面AAC11C,AA1?AC?A, ∴AB?平面AAC11C. ???2分
又∵AC1?平面AAC11C, ∴AB?AC1. ???3分 ∵AB,AC1?平面ABC1,AB?AC1?A, ∴AC?平面ABC1. ???4分 1证法二:∵AA1?面ABC,∴AA1?AC,AA1?AB. 又∵AB?AC,
∴分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系. ??1分 则A(0,0,0),C1(0,1,1),B(1,0,0),C(0,1,0),A1(0,0,1),
?????????????AC?(0,1,?1),AC1?(0,1,1),AB?(1,0,0),Ks5u 1?????????????????∴AC1?AC1?0,AC1?AB?0, ?2分 ????????????????? ∴AC?AC1,AC?AB. ?3分 11又∵AB,AC1?平面ABC1,AB?AC1?A ∴AC?平面ABC1. ?4分 1证法三:∵AA1?面ABC,∴AA1?AC,
zB1C1A1PByCA(O)xAA1?AB.
又∵AB?AC,
∴分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系. ??1分 则A(0,0,0),C1(0,1,1),B(1,0,0),C(0,1,0),A1(0,0,1),
zB1C1A1PByCA(O)x?????????????AC?(0,1,?1),AC1?(0,1,1),AB?(1,0,0). 1? 设平面ABC1的法向量n?(x,y,z),
????????x?0?n?AC1?y?z?0则?????,解得. ???y??z??n?AB?x?0? 令z?1,则n?(0,?1,1), ??3分
?????∵AC?平面ABC1. ??4分 11??n, ∴AC(Ⅱ)∵AA1?平面BB1C1C,
∴点P到平面BB1C1C的距离等于点A到平面BB1C1C的距离
1113∴V?VP?BCC1?VA?BCC1?VC1?ABC?t2(3?2t)?t2?t3(0?t?), ?5分
6232 V'??t(t?1),
令V'?0,得t?0(舍去)或t?1,
列表,得
(0,1)
+ 递增
1 0 极大值
3(1,) 2- 递减
V' V
∴当t?1时,Vmax?1. ?8分 6(Ⅲ)分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系.
则A(0,0,0),C1(0,t,3?2t),B(t,0,0),C(0,t,0),A1(0,0,3?2t),
?????????????AC?(0,t,2t?3),AC1?(0,t,3?2t),AB?(t,0,0),Ks5u 1?????????CC1?(0,0,3?2t),BC?(?t,t,0). ??9分Ks5u ?? 设平面ABC1的法向量n1?(x1,y1,z1),
????????x1?0??n1?AC1?ty1?(3?2t)z1?0?则??????,解得??2t?3,
y?z1?1??n1?AB?tx1?0t?zB1C1A1PByCA(O)x?? 令z1?t,则n1?(0,2t?3,t). ?10分 ??? 设平面BCC1的法向量n2?(x2,y2,z2),
?????????n2?BC??tx2?ty2?0则???. ????????n2?CC1?(3?2t)z2?0?x2?y23由于0?t?,所以解得?.
z?02?2??? 令y2?1,则n2?(1,1,0). ?11分
设二面角A?BC1?C的平面角为?,
?????|n?n2||2t?3|10???则有|cos?|???1??.
2210|n1|?|n2|2?t?(2t?3)2 化简得5t?16t?12?0,解得t?2(舍去)或t?6. 5 所以当t?610时,二面角A?BC1?C的平面角的余弦值为. ?13分 510
相关推荐: