第一范文网 - 专业文章范例文档资料分享平台

(完整版)中考数学分类讨论题(含答案)

来源:用户分享 时间:2026/1/6 2:52:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第8课时 分类讨论题

在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.

分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.

类型之一 直线型中的分类讨论

直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.

1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )

A.50°

B.80° C.65°或50° D.50°或80°

2.(?乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为( )

A.9cm

B.12cm C.15cm

D.12cm或15cm

3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.

1

类型之二 圆中的分类讨论

圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.

4.(湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径 所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __. 5.(上海市)在△ABC中,AB=AC=5,cosB?过点B、C,那么线段AO的长等于 .

6.(?威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均

为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).

(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切?

3.如果圆O的半径为10,且经5

2

类型之三 方程、函数中的分类讨论

方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.

7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.

(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;

(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.

3

8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处. (1)直接写出点E、F的坐标;

(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该...抛物线的解析式;

(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

4

参考答案

1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。故顶角可能是50°或80°. 【答案】D

.

2.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm,底边长是6cm时,由于3+3不能大于6所以组不成三角形;当腰长是6cm,地边长是3cm时能组成三角形. 【答案】D

3.【解析】由折叠图形的轴对称性可知,B?F?BF,?B?FE??BFE,从而可求得B′E=BF;第(2)小题要注意分类讨论.

【答案】(1)证:由题意得B?F?BF,?B?FE??BFE, 在矩形ABCD中,AD∥BC,??B?EF??BFE,

??B?FE??B?EF,

?B?F?B?E.?B?E?BF.

(2)答:a,b,c三者关系不唯一,有两种可能情况: (ⅰ)a,b,c三者存在的关系是a2?b2?c2. 证:连结BE,则BE?B?E. 由(1)知B?E?BF?c,?BE?c.

在△ABE中,?A?90o,?AE2?AB2?BE2. QAE?a,AB?b,?a2?b2?c2. (ⅱ)a,b,c三者存在的关系是a?b?c.证:连结BE,则BE?B?E. 由(1)知B?E?BF?c,?BE?c.在△ABE中,AE?AB?BE, ?a?b?c.

4.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。 【答案】 3<r≤4或r=2.4

5.【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。由AB=AC=5,cosB?3,可5得BC边上的高AD为4,圆O经过点B、C则O必在直线AD上,若O在BC上方,则AO=3,若O在BC下方,则AO=5。 【答案】3或5.

6.【解析】在两圆相切的时候,可能是外切,也可能是内切,所以需要对两圆相切进行讨论.

5

(完整版)中考数学分类讨论题(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6k7bn4ch640mq5e7eayt5nd0e7n2yj017dr_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top