【考点】勾股定理的应用.
【 解析】(1)根据题意直接利用锐角三角函数关系得出LR=AR?cos∠ARL求出答案即可; (2)根据题意直接利用锐角三角函数关系得出BL=LR?tan∠BRL,再利用AL=ARsin∠ARL,求出AB的值,进而得出答案.
【解答】解:(1)在Rt△ALR中,AR=6km,∠ARL=42.4°, 由cos∠ARL=
,得LR=AR?cos∠ARL=6×cos42.4°≈4.44(km).
答:发射台与雷达站之间的距离LR为4.44km; (2)在Rt△BLR中,LR=4.44km,∠BRL=45.5°, 由tan∠BRL=又∵sin∠ARL=
,得BL=LR?tan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km), ,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),
∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km). 答:这枚火箭从A到B的平均速度大约是0.51km/s.
【点评】此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键. 变式训练6:
(2016海南)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
【能力检测】
1. (2016贵州毕节3分)到三角形三个顶点的距离都相等的点是这个三角形的( ) A.三条高的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条边的垂直平分线的交点
2. (2016·广西桂林·8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF
(1)根据题意,补全原形; (2)求证:BE=DF.
3. (2016·湖北随州·10分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】
(1)如图1,当tan∠PAB=1,c=4如图2,当∠PAB=30°,c=2时,a= 【归纳证明】
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
时,a= 4 ,b=
,b= 4
;
;
【拓展证明】
(3)如图4,?ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3
,AB=3,求AF的长.
4. (2016·湖北武汉·10分)在△ABC中,P为边AB上一点. (1) 如图1,若∠ACP=∠B,求证:AC=AP·AB; (2) 若M为CP的中点,AC=2,
① 如图2,若∠PBM=∠ACP,AB=3,求BP的长;
② 如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
2
5. (2016·山东省济宁市·3分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
【参考答案】 变式训练1:
(2016·湖北荆门·3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A.7 B.10 C.11 D.10或11
【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
【 解析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.
【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0, 解得m=6,
则原方程为x2﹣7x+12=0, 解得x1=3,x2=4,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11; ②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10. 综上所述,该△ABC的周长为10或11. 故选:D. 变式训练2:
(2016·四川泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.
相关推荐: