西安交通大学继续教育学院毕业论文
Pcj?PC?Kd?368?0.7?257.6KWQcj?Pcj?tan??257.6?0.48?123.6KvarSC1?
?2PC21??QC257.62?123.62?285.7kVA2?一般情况下,备用设备与消防设备都不考虑在计算负荷之内,只有当消防用电的计算有功功率大于火灾时可能同时切除的一般电力、照明负荷的计算有有功功率时,按未切除的一般电力、照明负荷加上消防负荷计算低压总设备功率。
第三章 无功补偿
3.1 无功补偿的目的
电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。现在的居民住宅用电设备大都属于阻性负载和感性负载,所以整个供电系统通常是阻感性的,因此供电系统中会消耗大量的无功功率,从而导致功率因数的降低。功率因数的降低会使电能的传输产生大量的损耗,并且无功功率会影响电压的损耗,同时也会使电力设备的利用率相应降低,造成较多的经济和能源的浪费。所以,根据实际情况,一般居民小区的自然功率因数范围在0.7—0.75之间。但是,根据有关规定,居民用电的功率因数应当保持在0.9以上,以满足供电要求。当功率因数不满足要求时,首先应当想办法提高自然功率因数。要想提高自然功率因数,可以选择合适的电动机型号规格,防止电动机长时间空载运行或者合理选择变压器的容量等方法都可达到目的。若提高自然功率因数仍达不到要求,则需要对小区内的供电系统进行无功补偿。
3.2 无功补偿的方法,
提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。
1. 随机补偿
17
随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。 随机补偿的优点:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。
2. 随器补偿
随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。
随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。
3. 跟踪补偿
跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。
本工程无功补偿采用跟踪补偿,即并联电容器的方法。并联电容器装设位置共有高压集中补偿、低压集中补偿和单独就地补偿是三种方法。本次设计采用低压集中补偿的方法。
并联电容器采用自动调节的控制方式,俗称无功自动补偿装置。电容器在低压母线进行补偿时均为自动补偿方式,即实际补偿电容器容量随自然功率因数的变化而调整。低压无功自动补偿装置示意图。
图3-1 低压无功自动补偿装置的原理电路
18
西安交通大学继续教育学院毕业论文
3.3 无功补偿容量
自然功率因数的计算方法如下:
cos??PC (3-1) SC采用分组自动投切的补偿装置的无功补偿容量应按下式确定:
QC?PC(tan?1?tan?2) (3-2)
tan?1——补偿前功率因数cos?1对应的正切值; tan?2——补偿后期望的功率因数cos?2对应的正切值。 在这里以供住宅负荷的T3变压器进行无功补偿为例。
根据2.2.3中计算出的数据Pc∑=1874.7KW,Qc∑=949.6KW,视在功率为:
SC??2101.5KVA
由公式12可算出自然功率因数,即:cos?=Pc∑/Sc∑=1874.7/2101.5=0.89所
以住宅部分负荷自然功率因数为0.89,补偿后期望达到0.97,则由公式13可得:
QC?PC(tan?1?tan?2)?1874.7?[tan(arccos0.89)?tan(arccos0.97)]?487.4Kvar
根据计算出来的结果,可选用12组额定容量为30Kvar的电容器和10组额定容量为15Kvar的电容器。因此,实际补偿容量为510Kvar。
商业和公共部分负荷T3变压器无功补偿可用此方法进行计算,结果见表9
第四章 短路电流的计算
19
4.1 短路计算的目的
(1)为了选择和校验电气设备。如断路器、隔离开关、熔断器、互感器、母线、瓷瓶、电缆、架空线等等。其中包括计算三相短路冲击电流、冲击电流有效值以校验电气设备电动力稳定,计算三相短路电流稳态有效值用以校验电气设备及载流导体的热稳定性,计算三相短路容量以校验断路器的遮断能力等。
(2)为继电保护装置的整定计算。在考虑正确、合理地装设保护装置,在校验保护装置灵敏度时,不仅要计算短路故障支路内的三相短路电流值,还需知道其它支路短路电流分布情况;不仅要算出最大运行方式下电路可能出现的最大短路电流值,还应计算最小运行方式下可能出现的最小短路电流值;不仅要计算三相短路电流而且也要计算两相短路电流或根据需要计算单相接地电流等。
(3)在选择与设计系统电气之接成时,短路计算可为不同方案进行技术性比较以及确定是否采取限制短路电流措施等提供依据。
4.2 短路故障的形式
三相系统的短路主要分为单相、两相及三相短路三大类。单相短路只能发生在中性线引出的四线制系统及中性点接地的系统中。一般情况下,三相短路电流要大于单相与两相短路电流,尤其对于电源距离供电系统较远时,三相短路电流最大,此时因系统短路而产生的危害也最为严重。为了保证电力系统中电气设备在处于最严重的短路情况下能够可靠的工作,在选择和校验电气设备时,也都按照三相短路时的数值来校验?4?。
4.2.1 短路电流计算基本步骤
本工程采用标幺值法计算短路电流,其基本步骤为: (1) 确定基准值
基准容量:Sd=100MV·A;基准电压:Ud=Uc。 基准电流:
Id?Sd/3Ud (4-1)
20
相关推荐: