2019全国各地中考压轴题(选择、填空)按题型整理:
三、函数图像与系数综合
1.(2019?鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为( )
A.1个
B.2个
C.3个
D.4个
解:①∵抛物线开口向上,∴a>0, ∵抛物线的对称轴在y轴右侧,∴b<0 ∵抛物线与y轴交于负半轴, ∴c<0,
∴abc>0,①错误;
②当x=﹣1时,y>0,∴a﹣b+c>0, ∵
,∴b=﹣2a,
把b=﹣2a代入a﹣b+c>0中得3a+c>0,所以②正确; ③当x=1时,y<0,∴a+b+c<0, ∴a+c<﹣b,
∵a>0,c>0,﹣b>0,
∴(a+c)2<(﹣b)2,即(a+c)2﹣b2<0,所以③正确; ④∵抛物线的对称轴为直线x=1, ∴x=1时,函数的最小值为a+b+c,
∴a+b+c≤am2+mb+c,
即a+b≤m(am+b),所以④正确. 故选:C.
2.(2019?随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+b+c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有( )
A.1个
B.2个
C.3个
解:∵抛物线开口向下, ∴a<0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方, ∴c>0,
∴abc<0,所以①正确; ∵b=﹣2a, ∴a+b=a﹣a=0, ∵c>0,
∴a+b+c>0,所以②错误; ∵C(0,c),OA=OC, ∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0, ∴ac﹣b+1=0,所以③错误; ∵A(﹣c,0),对称轴为直线x=1,
D.4个
∴B(2+c,0),
∴2+c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确; 故选:B.
3.(2019?荆门)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论: ①abc>0, ②3a+c<0,
③a(m﹣1)+2b>0,
④a=﹣1时,存在点P使△PAB为直角三角形. 其中正确结论的序号为 ②③ .
解:将A(﹣1,0),B(m,0),C(﹣2,n)代入解析式y=ax2+bx+c, ∴对称轴x=∴﹣=m﹣1, ∵1<m<3, ∴ab<0, ∵n<0, ∴a<0, ∴b>0, ∵a﹣b+c=0, ∴c=b﹣a>0 ①abc<0;错误; ②当x=3时,y<0,
∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,②正确; ③a(m﹣1)+2b=﹣b+2b=b>0,③正确; ④a=﹣1时,y=﹣x2+bx+c, ∴P(,b+1+
),
,
若△PAB为直角三角形,则△PAB为等腰直角三角形, ∴AP的直线解析式的k=1,
∴b+1+=+1,
∴b=﹣2, ∵b>0,
∴不存在点P使△PAB为直角三角形. ④错误; 故答案为②③;
4.(2019?益阳)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是( )
A.①②
B.①④
C.②③
D.②④
解:①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0, ∴ac<0,故①正确; ②∵对称轴x<﹣1, ∴﹣
<﹣1,a>0,
∴b<2a,
∴b﹣2a<0,故②正确.
③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误. ④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误; 故选:A.
5.(2019?绵阳)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④<﹣4,正确的个数是( )
+
A.1
B.2
C.3
D.4
解:①∵抛物线开口向上, ∴a>0,
∵抛物线对称轴在y轴的右侧, ∴b<0,
∵抛物线与y轴的交点在x轴上方, ∴c>0,
∴abc<0,所以①正确;
②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1, ∴
<﹣
<
,
∴1<﹣当﹣
<, <时,b>﹣3a,
∵当x=2时,y=4a+2b+c=0, ∴b=﹣2a﹣c, ∴﹣2a﹣c>﹣3a, ∴2a﹣c>0,故②正确;
③当x=时,y的值为a+b+c, 给a+b+c乘以4,即可化为a+2b+4c, ∵抛物线的对称轴在1<﹣
<,
∴x=关于对称轴对称点的横坐标在和之间, 由图象可知在和2之间y为负值,2和之间y为正值, ∴a+2b+4c与0的关系不能确定,
相关推荐: