第一范文网 - 专业文章范例文档资料分享平台

北京市密云区2019-2020学年第二学期高三第一次阶段性测试答案20200403

来源:用户分享 时间:2025/8/24 12:20:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

密云区2019-2020学年第二学期高三第一次阶段性测试

数学试卷参考答案及评分标准

一、选择题:共10小题,每小题4分,共40分.

题号 答案 1 C 2 C 3 B 4 A 5 D 6 B 7 D 8 D 9 C 10 C

二、填空题:共5小题,每小题5分,共25分.

(0,?2)11.?10 12.;y??x 13.16;21

14.π;[?π+kπ,kπ],k?Z 15.(??,3). 2备注:若小题有两问,第一问3分,第二问2分.

三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)

b2?c2?a21?, (Ⅰ)解:由余弦定理得cosA?2bc2在?ABC中,0?A?π,所以A?若选择①和②

方法一 将a?π. 37,b?2代入b2?c2?a2?bc化简得c2?2c?3?0.

所以c??1(舍),或c?3. 因此S?ABC?方法二 由正弦定理得

11333bcsinA??2?3??. 2222ab, ?sinAsinB所以723,因此sinB?. ?sinB3722. 7在?ABC中,因为a?b,所以A?B. 因此B为锐角,所以cosB?所以sinC?sin(A?B)?sinAcosB?cosAsinB?33. 27因此S?ABC?133absinC?. 22若选择①和③

由sinC?2sinB得

2RsinC?2?2RsinB(R为?ABC外接圆的半径), 所以c?2b.

将a?7,c?2b代入b2?c2?a2?bc解得b?7. 3所以c?27. 311727373. bcsinA?????222633所以S?ABC?若选择②和③

由sinC?2sinB得

2RsinC?2?2RsinB(R为?ABC外接圆的半径), 所以c?2b.

因为b?2,所以c?4.

所以S?ABC?(Ⅱ)解:因为A?113bcsinA??2?4??23. 222π2π,所以B?C?. 332π 所以cosB?cosC?cosB?cos(?B)

3 ?cosB?cos2π2πcosB?sinsinB 33 ?因为0?B?所以当B?31πsinB?cosB?sin(B?). 2262ππ5π,所以?B?. 366π时,cosB?cosC有最大值1. 3

17. (本小题满分14分)

(Ⅰ)解:记“选取的这份试卷的调查结果是膳食合理状况类中习惯良好者”为事件A.

有效问卷共有 380+550+330+410+400+430=2500(份), 受访者中膳食合理习惯良好的人数是400?0.65?260人,

所以,P(A)?260=0.104. 2500(Ⅱ)解:记事件A为“该区卫生习惯良好者”,

事件B为“该区体育锻炼状况习惯良好者”,

事件C为“该区膳食合理习惯良好者”, 由题意,估计可知P(A)=0.6,P(B)=0.8,P(C)=0.65,

设事件E为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯中,至少具备2个良好习惯”. 由题意知,

E?(ABC)U(ABC)U(ABC)U(ABC)

所以事件E的概率

P(E)?P(ABC)?P(ABC)?P(ABC)?P(ABC)

=P(A)P(B)P(C)?P(A)P(B)P(C)?P(A)P(B)P(C)?P(A)P(B)P(C)

=0.6?0.8?0.35+0.6?0.2?0.65+0.4?0.8?0.65+0.6?0.8?0.65 =0.168+0.078+0.208+0.312

=0.766

所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯中,至少具备2 个良好习惯的概率为0.766. (Ⅲ)解:D?6?D?1>D?5?D?4?D?3?D?2.

18.(本小题满分15分)

(Ⅰ)解:取AD中点为O,连接OP,OC和AC.

因为?PAD为等边三角形, 所以PO?OD.

因为平面PAD ⊥平面ABCD,PO?平面PAD,

所以PO?平面ABCD. 因为OC?平面ABCD,

所以PO?OC. 在菱形ABCD中,AD?CD,?ADC?60, 所以?ADC为正三角形,因此OC?AD.

以O为原点建立空间直角坐标系,如图所示.

oP z M x A B

N O C y D

0),C(0,3,0),D(?1,0,0), 则O(0,0,0),A(1,0,0),B(2,3,13),N(1,3,0). P(0,0,3),M(?,0,22uuuuruuuruuur13),AB?(1,3,0),AP?(?1,0,3). 所以CM?(?,?3,22设平面PAB的法向量m??x,y,z?,

uuur??m?AB?0,??x?3y?0,由? 得? uuur???m?AP?0.??x?3z?0.

北京市密云区2019-2020学年第二学期高三第一次阶段性测试答案20200403.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6lgg577d5d4ncj33s2bw8iiwn479cv018dk_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top