第一范文网 - 专业文章范例文档资料分享平台

小升初知识点汇总 

来源:用户分享 时间:2025/5/30 23:46:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(11)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

(12)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数-2×总头数)÷2 如果假设全是兔子,可以有下面的式子: 鸡的只数=(4×总头数-总腿数)÷2 兔的头数=总头数-鸡的只数 A∪B=A+B-A∩B

(13)重叠问题(容斥原理)

1、两者的容斥原理: A∪B=A+B-A∩B (∩表示重合部分)

2、三者的容斥原理: A∪B∪C=A+B+C-A∩B- B∩C-A∩C+A∩B∩C (∩表示重合部分) (14)按比例分配问题

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 (15)牛吃草问题

解决牛吃草问题常用到四个基本公式,分别是:

1、草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数; 3、吃的天数=原有草量÷(牛头数-草的生长速度); 4、牛头数=原有草量÷吃的天数+草的生长速度。

文档

(二)分数和百分数的应用 1、分数加减法应用题:

分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。 2、分数乘法应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问所对应的分率,然后根据一个数乘分数的意义正确列式。 3、分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和“单位一”的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减少乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)÷乙数或(甲数减乙数)÷甲数。

已知一个数的几分之几(或百分之几),求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成X根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。 4、出勤率

发芽率=发芽种子数/实验种子数×100% 小麦的出粉率=面粉的重量/小麦的重量×100% 产品的合格率=合格的产品数/产品总数×100% 职工的出勤率=实际出勤人数/应出勤人数×100%

5.工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

文档

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 工作总量÷工作效率和=合作时间

6.经济利润问题

数量关系:利润=售价-成本 利润率=(售价-成本)÷成本×100% 售价=成本×(1+利润率) 亏损=成本-售价

亏损率=(成本-售价)÷成本×100%

7.税收、利息问题:缴纳的税款叫应纳税款,应纳税额与各种收入(销售额、营业额、应纳税所得额……)的比率叫做税率。 存入银行的钱叫做本金。 取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。

数量关系:利息=本金×利率×存款年(月)数 年(月)利率=利息÷本金÷存款年(月)数×100%

本利和=本金+利息=本金×(1+年(月)利率×存款年(月)数)

8.浓度问题

溶液的重量=溶质的重量+溶剂的重量

浓度=

溶质重量溶液重量

×100%

溶质重量=溶液重量×浓度 溶液重量=溶质重量÷浓度

溶剂重量=溶液重量-溶质重量=溶液重量×(1-浓度)

文档

浓度三角法:

混合浓度z%

z-y z-y x-z

甲溶液浓度x% 乙溶液浓度y% z-y : x-z

甲溶液质量 :乙溶液质量

七、简单的统计

1.统计表

1) 单式统计表:只含有一个项目的统计表。

2) 复式统计表:含有两个或两个以上统计项目的统计表。 3) 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分

比的统计表。 2.统计图

1)条形统计图

优点:很容易看出各种数量的多少

注意:a.画条形统计图时,直条的宽窄必须相同;

b.取一个单位长度表示数量的多少要根据具体情况而确定; c.复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 2)折线统计图

优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间,不同时间之间的距离要根据年份或月份的间隔来确定。 3)扇形统计图

优点:很清楚地表示出各部分同总数之间的关系。 统计图 条形统计图 折线统计图 意义 用直条的长短表示数量的多少 用不同位置的点表示数量的多少,并用折线的上升或下降来表示数量的增减变化情况 以一个圆的面积表示事物的总体,以相应的扇形面积表示各有关部分占总体的百分数 文档

优点 清楚地表明各种数量的多少,便于对比。 不但可以表示出数量的多少,而且能够清楚地表示数量增减变化的情况。 可以清楚地反映各部分之间、部分与整体之间的数量关系。 扇形统计图

3.可能性

1)区分确定事件、不确定事件、可能性事件 确定事件:发生可能性为1,就是一定能发生; 不可能事件:发生可能性为0,就是一定不发生;

可能性事件:发生可能性大于0,且小于1,可能发生、也可能不发生。 2)简单可能性事件发生的可能性 3)游戏规则的公平性

文档

搜索更多关于: 小升初知识点汇总  的文档
小升初知识点汇总 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6mt6b5lwc39pugm7qnnb9acj39qpyw00efg_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top