8.认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,
12232
如:(a+b)=a+b,(a+b)=a+2ab+b2,(a+b)=(a+b)(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:
上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).
第5页(共22页)
2018年05月08日wujun的初中数学组卷
参考答案与试题解析
一.解答题(共8小题)
1.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F. 当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
【解答】解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS); ∴∠ABE=∠CBF,BE=BF; ∵∠ABC=120°,∠MBN=60°,
第6页(共22页)
∴∠ABE=∠CBF=30°, ∴AE=BE,CF=BF; ∵∠MBN=60°,BE=BF, ∴△BEF为等边三角形; ∴AE+CF=BE+BF=BE=EF;
图2成立,图3不成立. 证明图2.
延长DC至点K,使CK=AE,连接BK, 在△BAE和△BCK中,
则△BAE≌△BCK, ∴BE=BK,∠ABE=∠KBC, ∵∠FBE=60°,∠ABC=120°, ∴∠FBC+∠ABE=60°, ∴∠FBC+∠KBC=60°, ∴∠KBF=∠FBE=60°, 在△KBF和△EBF中,
∴△KBF≌△EBF, ∴KF=EF, ∴KC+CF=EF, 即AE+CF=EF. 图3不成立,
AE、CF、EF的关系是AE﹣CF=EF.
第7页(共22页)
2.(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD. 求证:EF=BE+FD;
(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?
(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.
第8页(共22页)
相关推荐: