第一范文网 - 专业文章范例文档资料分享平台

北京市昌平区2016-2017学年高三(上)期末数学试卷(理科)试卷(含答案)

来源:用户分享 时间:2025/5/19 2:01:03 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

由已知得,解得.

所以椭圆C的方程为法二

设椭圆c的标准方程为

+=1.

由已知得,.

所以a=2,b2=a2﹣c2=2. 所以椭圆c的方程为为( II)法一

当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.

+

=1.

由得(2k+1)x+4kx﹣2=0.

22

设A(x1,y1),B(x2,y2).

特殊地,当A为(2,0)时,k=﹣,所以2x2=﹣,x2=﹣,y2=,即B(﹣,) 所以点B关于y轴的对称点D(,),则直线AD的方程为y=﹣x+2. 又因为当直线l斜率不存时,直线AD的方程为x=0, 如果存在定点Q满足条件,则Q(0,2). 所以KQA=

=

=k﹣

,KQB=

=﹣k+

又因为

所以KQA=KQB,即A,D,Q三点共线.

即直线AD恒过定点,定点坐标为Q(0,2). 法二

( II)①当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1. 由

,可得(1+2k2)x2+4kx﹣2=0.

设A(x1,y1),B(x2,y2),则D(﹣x2,y2).

所以

因为,

所以直线AD的方程为:.

所以,

=,

=,

=,

=,

=,

=.

因为当x=0,y=2,

所以直线MD恒过(0,2)点.

②当k不存在时,直线AD的方程为x=0,过定点(0,2). 综上所述,直线AD恒过定点,定点坐标为(0,2).

【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.

20.(13分)(2016秋?昌平区期末)已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(﹣6,0),(0,4),(0,﹣4),(4,﹣4),(﹣4,4),(2,﹣2),(﹣2,2)}.规定: (1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)

(2)对于任意的k∈N*,序列ak,bk满足: ①ak∈Ω,bk∈D

②a1=(0,0),ak=ak﹣1+bk﹣1,k≥2,k∈N* (Ⅰ) 求a2

(Ⅱ) 证明:?k∈N*,ak≠(5,0)

(Ⅲ) 若ak=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,ak. 【考点】数学归纳法.

【分析】(Ⅰ)根据新定义即可求出a2=(6,0)或(0,4), (Ⅱ)利用反证法即可证明,

(Ⅲ)由新定义可得kmin=5,相应的a1,a2,…,ak.

【解答】解:(Ⅰ)对于任意的b=(x2,y2)∈D,a1+b=(0,0)+(x2,y2)=(x2,y2) 若(x2,y2)∈Ω,则(x2,y2)=(6,0),或(x2,y2)=(0,4), 故a2=(6,0)或(0,4),

(Ⅱ) 证明:假设命题不成立,即?k∈N*,使ak=(5,0) 即?bi∈D,i=1,2,…,k﹣1(k≥2),使a1+

=ak,化简得

=(5,0),

所以存在m,n,p∈Z,且m+n+p=k﹣1,使6m+4n+2p=5.

又因为6m+4n+2p=2(3m+2n+p)是偶数,而5是奇数,与6m+4n+2p=5矛盾, 故假设不成立,即:?k∈N,ak≠(5,0),

(Ⅲ)kmin=5,a1=(0,0),a2=(0,4),a3=(4,0),a4=(4,4),a5=(6,2). 【点评】本题考查了新定义的知识的应用,关键是读懂新定义,以及反证法,属于中档题.

*

北京市昌平区2016-2017学年高三(上)期末数学试卷(理科)试卷(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6pw8h3xihd1is530855j3blzb1bw3200hn5_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top