?2?k?x1?1????3?x2????2?k?x2?1????3?x1??12?2?x1?x2??k??2x1x2?4?x1?x2??6?? ??9?3?x1?x2??x1x29?3?x1?x2??x1x2?3k2?3?6k212?2?x1?x2??k?2?2?4?2?6?2122k?1??3k?13k?1????2. ?2226k3k?36?2k?1?9?3?2?23k?13k?1综上得k1?k2为常数2. 21.解:(1)因为f??x??1?2a,x?0, x因为函数y?f?x?存在与直线2x?y?0垂直的切线, 所以f??x???即
1在?0,???上有解, 211?2a??在?0,???上有解, x22也即x?在?0,???上有解,
4a?121所以?0,得a?,
4a?14故所求实数a的取值范围是??1?,???. ?4?(2)证明:因为g?x??f?x??1212x?x?lnx?2ax, 22x2?2ax?1因为g??x??,
x①当?1?a?1时,g?x?单调递增无极值点,不符合题意,
②当a?1或a??1时,令g??x??0,设x?2ax?1?0的两根为x1和x2,
2因为x1为函数g?x?的极大值点,所以0?x1?x2, 又x1x2?1,x1?x2?2a?0,所以a?1,0?x1?1,
1x12?1?0,则a?所以g??x1??x1?2a?, x12x1要证明
lnx11?2?a,只需要证明x1lnx1?1?ax12, x1x121x12?x1x121?1???x1?x1lnx1?1,0?x1?1. 因为x1lnx1?1?ax?x1lnx1?222
131x?x?xlnx?1,x??0,1?, 22321321所以h??x???x??lnx,记P?x???x??lnx,x??0,1?,
2222令h?x???11?3x2则P??x???3x??,
xx当0?x?33?x?1时,P??x??0, 时,P??x??0,当33所以P?x?max?P??3?3?ln?0,所以h??x??0. ??3?3??所以h?x?在?0,1?上单调递减, 所以h?x??h?1??0,原题得证.
??x?3??22.解:(1)由直线l的参数方程为??y?4???得直线l的普通方程为x?y?7?0.
2t2(为参数),
t2t2又由??6sin?得圆C的直角坐标方程为x??y?3??9.
22??x?4??(2)把直线l的参数方程??y?3???得t?42t?7?0,
设t1,t2是上述方程的两实数根, 所以t1?t2?42,t1t2?7, ∴t1?0,t2?0, 所以
22t2(为参数),代入圆的直角坐标方程,
Ct2t21142??. PAPB7
???3x,x??1,?1?23.解:(1)f?x???2?x,?1?x?,
2?1?3x,x?.??2根据函数f?x?的单调性可知,当x?1?1?3时,f?x?min?f???. 2?2?2所以函数f?x?的值域M??,???.
?2?(2)因为a?M,所以a??3?33,所以0??1. 22a又a?1?a?1?a?1?a?1?2a?3, 由a?3,知a?1?0,4a?3?0, 22aa?1??4a?3???0,所以所以
所以a?1?a?1?37??2a. 2a237??2a. 2a2
相关推荐: