第一范文网 - 专业文章范例文档资料分享平台

2019-2020学年山东省淄博市高考数学二模试卷(理科)(有答案)

来源:用户分享 时间:2025/6/7 2:41:00 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

.

当x=﹣lna时,f(x)取得极小值为f(﹣lna)=lna, 函数f(x)有且仅有一个极小值点x=﹣lna,

所以当a≤0时,f(x)没有极值点,当a>0时,f(x)有一个极小值点. (Ⅱ)命题“?x∈[0,+∞),f(x)≥kg(x)”是假命题, 则“?x∈[0,+∞),f(x)<kg(x)”是真命题, 即不等式f(x)<kg(x)在区间[0,+∞)内有解.

若a=1,则设F(x)=f(x)﹣kg(x)=e+kln(x+1)﹣(k+1)x﹣1, 所以设则

﹣(k+1), ﹣(k+1),

,且h'(x)是增函数,

x

所以h'(x)≥h'(0)=1﹣k 当k≤1时,h'(x)≥0,

所以h(x)在[0,+∞)上是增函数,h(x)≥h(0)=0,即F'(x)≥0, 所以F(x)在[0,+∞)上是增函数,

所以F(x)≥F(0)=0,即f(x)≥kg(x)在x∈[0,+∞)上恒成立. 当k>1时,因为

因为h'(0)=1﹣k<0,h'(k﹣1)=

所以h'(x)在(0,k﹣1)上存在唯一零点x0,

当x∈[0,x0)时,h'(x)<h'(x0)=0,h(x)在[0,x0)上单调递减, 从而h(x)≤h(0)=0,即F'(x)≤0,所以F(x)在[0,x0)上单调递减, 所以当x∈(0,x0)时,F(x)<F(0)=0,即f(x)<kg(x). 所以不等式f(x)<kg(x)在区间[0,+∞)内有解 综上所述,实数k的取值范围为(1,+∞).

21.已知椭圆C:

,点P是椭圆C上任意一点,且点M满足

(λ>1,λ是常数).当

在[0,+∞)是增函数,

点P在椭圆C上运动时,点M形成的曲线为Cλ. (Ⅰ)求曲线Cλ的轨迹方程;

(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B. ①若切点A的坐标为(x1,y1),求切线MA的方程;

②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由. 【考点】K4:椭圆的简单性质.

.

.

【分析】(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.

由于点P在椭圆C上,得

(Ⅱ)①当过点A切线的斜率存在时,

,即得曲线Cλ的轨迹方程.

设该切线的方程为y﹣y1=k(x﹣x1),联立方程组,

由△=0,得,得;得过点A的切线方程为

过点A切线的斜率不存在时,符合方程②存在定圆恒与直线AB相切; 可得A,B两点坐标都满足方程

,且点M的坐标为(m,n)满足曲线Cλ的方程:,

即原定O到直线AB的距离为,即直线AB始终与圆相切.

【解答】解:(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.

由于点P在椭圆C上,得,

即曲线Cλ的轨迹是椭圆,标准方程为(Ⅱ)①当过点A切线的斜率存在时,

设该切线的方程为y﹣y1=k(x﹣x1),即y=kx+(y1﹣kx1)

联立方程组,

即由△=0,得即

,得;

.

.

此时过点A的切线方程为

过点A切线的斜率不存在时,切点为(±2,0),方程为x=±2, 符合方程

形式.

②存在定圆恒与直线AB相切;

设切点B(x2,y2),与A,B两点对应的点M的坐标设为(m,n); 同理过点B的切线方程为

同时两条切线MA和MB都过点M(m,n),所以.

即A,B两点坐标都满足方程,

且点M的坐标为(m,n)满足曲线Cλ的方程:

即原定O到直线AB的距离为,

所以直线AB始终与圆

相切.

.

2019-2020学年山东省淄博市高考数学二模试卷(理科)(有答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6sp4x1mxyd1jxus0hkxz44s0w0d4pn00w2s_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top