第一范文网 - 专业文章范例文档资料分享平台

中考数学压轴题专题直角三角形的边角关系的经典综合题含答案解析

来源:用户分享 时间:2025/5/31 8:44:42 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

中考数学压轴题专题直角三角形的边角关系的经典综合题含答案解析

一、直角三角形的边角关系

1.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数: (1)如图1,若k=1,则∠APE的度数为 ;

(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.

(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.

【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析. 【解析】

分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论; (2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;

(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;

详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,

∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形, ∴BD=AF,BF=AD. ∵AC=BD,CD=AE, ∴AF=AC. ∵∠FAC=∠C=90°,

∴△FAE≌△ACD,

∴EF=AD=BF,∠FEA=∠ADC. ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD. ∵AD∥BF, ∴∠EFB=90°. ∵EF=BF, ∴∠FBE=45°, ∴∠APE=45°.

(2)(1)中结论不成立,理由如下:

如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,

∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形, ∴BD=AF,BF=AD. ∵AC=3BD,CD=3AE,

ACCD??3. BDAE∵BD=AF,

ACCD??3. AFAE∵∠FAC=∠C=90°, ∴△FAE∽△ACD,

ACADBF???3,∠FEA=∠ADC. AFEFEF∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EMD. ∵AD∥BF, ∴∠EFB=90°.

在Rt△EFB中,tan∠FBE=∴∠FBE=30°, ∴∠APE=30°,

(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,

EF3, ?BF3

∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形, ∴BE=DH,EH=BD. ∵AC=3BD,CD=3AE,

ACCD??3. BDAE∵∠HEA=∠C=90°, ∴△ACD∽△HEA,

ADAC??3,∠ADC=∠HAE. AHEH∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.

在Rt△DAH中,tan∠ADH=∴∠ADH=30°, ∴∠APE=30°.

点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.

AH?3, AD

2.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE. 特殊发现:

如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明). 问题探究:

把图1中的△AEF绕点A顺时针旋转.

(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;

(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记

AC=k,当k为何值时,△CPE总是等边三角形?(请直接写出后的值,不必说) BC

【答案】?1? PC?PE成立 ?2? ,PC?PE成立 ?3?当k为角形 【解析】 【分析】

3时,VCPE总是等边三3(1)过点P作PM⊥CE于点M,由EF⊥AE,BC⊥AC,得到EF∥MP∥CB,从而有

EMFP?,再根据点P是BF的中点,可得EM=MC,据此得到PC=PE. MCPB(2)过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,先证△DAF≌△EAF,即可得出AD=AE;再证△DAP≌△EAP,即可得出PD=PE;最后根据FD⊥AC,BC⊥AC,PM⊥AC,可得FD∥BC∥PM,再根据点P是BF的中点,推得PC=PD,再根据PD=PE,即可得到结论.

(3)因为△CPE总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据多少即可. 【详解】

解:(1)PC=PE成立,理由如下:

如图2,过点P作PM⊥CE于点M,∵EF⊥AE,BC⊥AC,∴EF∥MP∥CB,∴

ACAC?k,=tan30°,求出当△CPE总是等边三角形时,k的值是BCBCEMFP?,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE; MCPB

(2)PC=PE成立,理由如下:

如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中

,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF, ∴△DAF≌△EAF(AAS), ∴AD=AE,在△DAP和△EAP中, ∵AD=AE,∠DAP=∠EAP,AP=AP, ∴△DAP≌△EAP(SAS), ∴PD=PE,

∵FD⊥AC,BC⊥AC,PM⊥AC, ∴FD∥BC∥PM, ∴

DMFP?, MCPB∵点P是BF的中点, ∴DM=MC,又∵PM⊥AC, ∴PC=PD,又∵PD=PE, ∴PC=PE;

(3)如图4,∵△CPE总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,

∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵

ACAC?k,=tan30°, BCBC3, 3∴k=tan30°=∴当k为

3时,△CPE总是等边三角形. 3

中考数学压轴题专题直角三角形的边角关系的经典综合题含答案解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6tm0t06unx5uqa87qzsz8c83h0epna01641_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top