21.在三角形纸片ABC中,已知∠ABC=90°,AB=5,BC=12.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为 (计算结果不取近似值).
三、解答题(本大题共72分) 22.计算
(1)2x(x﹣2y)﹣(2x﹣y) (2)(x﹣3)(3+x)﹣(x+x﹣1) (3)(﹣)﹣3+|1﹣
|﹣(
﹣π)0﹣(﹣1)2013.
2
2
23.已知:如图,∠1=∠2,∠C=∠D,求证:△OAC≌△OBD.
24.化简求值:已知x,y满足:x﹣4x+4+﹣3y)(x+3y)的值.
2
=0,求代数式(3x+y)﹣3(3x﹣y)(x+y)﹣(x
2
25.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题: (1)在上述变化过程中,自变量是 ,因变量是 ; (2)朱老师的速度为 米/秒;小明的速度为 米/秒;
(3)求小明第一次追上朱老师前,朱老师距起点的距离s与t的关系式,并写出自变量t的取值范围.
第5页(共32页)
26.我们来定义下面两种数:
①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:中间数=(左边数)
2
+(右边数),我们就称该整数为平方和数;例如:对于整数251.它中间的数字是5,左边数是2,
2
2
2
右边数是1.∵2+1=5,∴251是一个平方和数.又例如:对于整数3254,它的中间数是25,左边数是3,右边数是4,∵3+4=25∴2,34是一个平方和数.当然152和4253这两个数也是平方和数; ②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;例如:对于整数163,它的中间数是6,左边数是1,右边数是3,∵2×1×3=6,∴163是一个双倍积数,又例如:对于整数3305,它的中间数是30,左边数是3,右边数是5,∵2×35=30,∴3305是一个双倍积数,当然361和5303这两个数也是双倍积数;
注意:在下面的问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义完成下面问题:
(1)如果一个三位整数为平方和数,且十位数为9,则该三位数为 ;如果一个三位整数为双倍积数,且十位数字为4,则该三位数为 ;
(2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足什么数量关系;说明理由; (3)
为一个平方和数,
为一个双倍积数,求a2﹣b2.
2
2
27.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明: (1)△ABD≌△NCD; (2)CF=AB+AF.
第6页(共32页)
28.直角三角形有一个非常重要的性质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:
如图2,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN; (1)求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明:若不成立,请说明理由;
(3)如图4,∠BAC=90°,a旋转到与BC垂直的位置,E为BC上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM,PN,求证:PM⊥PN.
第7页(共32页)
2015-2016学年重庆市巴蜀中学七年级(下)期末数学试卷
参考答案与试题解析
一、选择题(本大题12个小题,每小题4分,共48分) 1.下列图形中,不是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形.
【分析】根据轴对称图形的概念对各个选项进行判断即可. 【解答】解:A、是轴对称图形,A不合题意; B、不是轴对称图形,B符合题意; C、是轴对称图形,C不合题意; D、是轴对称图形,D不合题意; 故选:B.
【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.
2.如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是( )
A.同位角相等,两直线平行 B.同旁内角互补,两直线平行 C.内错角相等,两直线平行 D.同平行于一条直线的两直线平行
【考点】平行线的判定与性质;余角和补角.
第8页(共32页)
相关推荐: