第一范文网 - 专业文章范例文档资料分享平台

「最新」2020版高考物理一轮复习第二章相互作用第2讲力的合成与分解学案-可编辑修改

来源:用户分享 时间:2025/6/5 0:18:02 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

最新小中高资料 可编辑修改

(1)细绳AC段的张力FTAC与细绳EG的张力FTEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力。

(1)图中杆上的力一定沿杆吗?

提示:甲图杆上的力不沿杆,乙图杆上的力沿杆。 (2)两图中分别以谁为研究对象? 提示:C点、G点。 尝试解答 (1)

M1

(2)M1g,方向与水平方向成30°指向右上方 (3)3M2g,方向水平向右。 2M2

题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律可求解。

(1)图甲中细绳AD跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,细绳AC段的拉力FTAC=FTCD=M1g

图乙中由FTEGsin30°=M2g,得FTEG=2M2g。 所以FTACM1

=。 FTEG2M2

(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有FNC=FTAC=M1g,方向与水平方向成30°,指向右上方。

(3)图乙中,根据平衡方程有FTEGsin30°=M2g,

FTEGcos30°=FNG,所以FNG=M2gcot30°=3M2g,方向水平向右。

总结升华

最新小中高资料 可编辑修改

9

最新小中高资料 可编辑修改

绳上的“死结”与“活结”模型的答题技巧

(1)无论“死结”还是“活结”一般均以结点为研究对象进行受力分析。

(2)如果题目搭配杆出现,一般情况是“死结”搭配有转轴的杆,“活结”搭配无转轴的杆。 [跟踪训练] 如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为FA、FB,物体受到的重力为G,下列表述正确的是( )

A.FA一定大于G B.FA一定大于FB C.FA一定小于FB

D.FA与FB大小之和一定等于G 答案 B

解析 分析O点受力如图所示,由平衡条件可知,FA与FB的合力与G等大反向,因FA⊥FB,故

FA、FB均小于G;因α>β,故FA>FB,B正确,A、C错误;由三角形两边之和大于第三边可知,

|FA|+|FB|>G,D错误。

1.方法概述

在分析力的合成与分解问题的动态变化时,用公式法讨论有时很繁琐,而用作图法解决就比较直观、简单,但学生往往没有领会作图法的实质和技巧,或平时对作图法不够重视,导致解题时存在诸多问题。用图解法来探究力的合成与分解问题的动态变化有时可起到事半功倍

最新小中高资料 可编辑修改

10

最新小中高资料 可编辑修改

的效果。 2.常见类型

(1)两个分力的夹角不变,当其中一个力的大小和方向不变,另一个力增大时,判断合力F的变化情况。

(2)把一个力分解为两个分力时,一个分力的大小不变,方向可变;而另一个分力的大小和方向都可变。

(3)把一个力分解为两个分力时,一个分力的方向不变,大小可变;而另一个分力的大小和方向都可变。 3.解题思路

(1)平行四边形定则是基本方法,但也要根据实际情况采用不同的方法: ①若出现直角三角形,常用三角函数表示合力与分力的关系;

②若给定条件中有长度条件,常用力组成的三角形(矢量三角形)与长度组成的三角形(几何三角形)的相似比求解。

(2)用力的矢量三角形分析力的最小值问题的规律:

①若已知F合的方向、大小及一个分力F1的方向,则另一分力F2的最小值的条件为F1⊥F2; ②若已知F合的方向及一个分力F1的大小、方向,则另一分力F2的最小值的条件为F2⊥F合。

如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中( )

A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大 [答案] B

[解析] 解法一:(平行四边形法)

最新小中高资料 可编辑修改

11

最新小中高资料 可编辑修改

将小球的重力沿垂直于墙和垂直于木板两个方向进行分解,画出平行四边形,两个分力分别为N1、N2;当木板顺时针转动时,N2的方向随之发生变化,由图可知N1、N2均减小,B正确。 解法二:(三角形法)

以小球为研究对象,画出小球受力的矢量三角形,木板对球的弹力大小为N2′,由力的矢量三角形很直观地可看出:N1始终减小,N2′始终减小。故B正确。 名师点睛

图解法解决力的合成和分解问题的极值的判断技巧

(1)两分力的夹角为α,当α<90°时,F合随着其中一个力的增大而增大。当α>90°时,F合的变化情况比较复杂,其中F合和增大的那个力的方向垂直时,F合有最小值。

(2)合力一定时,大小和方向都可变的分力(F2)的大小往往存在极值,且F2⊥F1时,F2有极小值;而方向不变、大小可变的力(F1)是单调变化的。

[2013·天津高考]如图所示,小球用细绳系住,绳的另一端固定于O点。现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是( )

A.FN保持不变,FT不断增大 B.FN不断增大,FT不断减小 C.FN保持不变,FT先增大后减小 D.FN不断增大,FT先减小后增大 答案 D

最新小中高资料 可编辑修改

12

「最新」2020版高考物理一轮复习第二章相互作用第2讲力的合成与分解学案-可编辑修改.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6v5gs0w7469d31q9p63i6j6mw9sjhs00dmv_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top