uruuurur??3x1?y1?0?m?AB?0????m?(1,?3,0) ruuuur?u??m?AB1?0??3x1?y1?z1?0r设平面C1B1BC的法向量为n?(x2,y2,z2),则有:
uruuurr??urr3x2?y2?0?m?CB?0????n?(1,3,23)cos?m,n??ruuur?u??m?CB1?0??3x2?3y2?z2?0A1B1BA与平面C1B1BC所成的锐二面角的余弦值为
19.【解析】(1)根据表格, A型车维修的概率为
由题意, ?的可能值为0,1,2,3, 所以p???0??urrm?n1uuruur??,故平面
4mn1. 4112, B型车维修的概率为, C型车维修的概率为. 5554434814344256 ; p???1????+??? ???555125555555125113142412191122; p???3????? p???2????+??+???555555555125555125所以ξ的分布列为
? p 所以E????0?0 1 2 3 48 12556 12519 1252 12548561924?1??2??3?? . 1251251251255???0.2x?250 ,所(2) 设获得的利润为w元,根据计算可得, x?850 , y?80,代入回归方程得y 以w???0.2x?250??x?500???0.2x?350x?125000 ,此函数图象为开口向下,以
2
x??350?875为对称轴的抛物线,所以当x?875时, W?x?取的最大值,即为使4S店获得
?2?0.2xy??1,点C?0,?b?, ?ab4b,整理,得3a?2b?0.① 7 最大利润,该产品的单价应定为875元. 20.【解析】(1)由题意,得直线AB的方程为
?点C到直线AB的距离d?又点?2,3?在椭圆上, ?2aba2?b2? 49??1.② 22abx2y2??1. 联立①②解得a?4, b?23,?椭圆E的方程为
16122(2)设直线MN的方程为y?kx?m,代入椭圆方程,并整理得3?4k2x2?8kmx ?4m?48?0.
??Q??64k2m2?163?4k2 ?m2?12??48 ?12?16k2?m2??0, ?12?16k2?m2?0, ??4m2?128km, x1x2?, ?x1?x2??223?4k3?4k3m2?48k2. ?y1y2??kx1?m? ?kx2?m??k?x1x2?km?x1?x2? ?m?23?4k22??uuuuruuura2x1x2?b2y1y216x1x2?12y1y2?又OM?ON?x1x2?y1y2,则由题意,得x1x2?y1y2? .
a2?b216?12整理,得3x1x2?4y1y2?0,则3?(满足??0).
4m2?123?4k2???4 ?3m?48k2?0,整理,得m2?6?8k2 23?4k2QMN?1?k ?x1?x2?1?k? 22?x1?x2?2?4x1x2?1?k?24812?16k2?m2??3?4k2?2?
?1?k? 2482m2?m2?m2????2?2???8m1?k23?.又点O到直线MN的距离d?.
2m1?k?SVMONm11?k21? ??MN?d? ?83??43,为定值.
22m21?k2x2?ax?21221.【解析】(1)函数g(x)?x?ax?2lnx的定义域为(0,+∞),g?(x)?x?a??.
xx2令g?(x)=0,则x2?ax?2?0,Δ=(?a)?4?1?2?a?8,
相关推荐: