(Ⅲ)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有AB,AC,AD,
AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.抽出一男一女的概率是
(19)【解】(Ⅰ)连接A1Q.
∵AA1?AC,M,Q分别是CC1,AC的中点,∴△AA1Q≌△CAM,∴?MAC??QA1A ∴?MAC??AQA1??QA1A??AQA1?90?即AM⊥A1Q……① ∵N,Q分别是BC,AC的中点,∴NQ∥AB, 又AB⊥AC,所以NQ⊥AC, 在直三棱柱中,AA1⊥面ABC,
∴NQ⊥AA1,又ACIAA1?A,所以NQ⊥平面ACC1A1, ∴NQ⊥AM……②,由①②及NQIAQ?Q得AM⊥平面PNQ. 1(Ⅱ)设P点到平面MNQ的距离为h,由A1B1∥AB∥NQ可得A1B1∥平面MNQ,
∴动点P到平面MNQ的距离为定值,
1由VP?MNQ?VA1?MNQ?VN?A1MQ,得VP?MNQ?S?A1MQ?NQ.
38. 15311S?A1MQ?,NQ?,VP?MNQ?
1682(20)【解】(Ⅰ)∵A(?3,0)在圆B的内部,∴两圆相内切,所以BC?8?AC, 即BC?AC?8?AB.
∴C点的轨迹是以A,B为焦点的椭圆,且长轴长2a?8,a?4,c?3,
x2y2 b?16?9?7∴曲线T的方程为:??1.
1672r2uuuruuuur7uuu(Ⅱ)当直线MN斜率不存在时,AN?AM?,OQ?7.
4uuuuruuuruuuuruuur7∴AM?AN?|AM|?|AN|?cosπ?7λ,则???;
16当直线MN斜率存在时,设M(x1,y1),N(x2,y2),MNy?k(x?3),则OQy?kx, ?7x2?16y2?112,由?得(7?16k2)x2?96k2x?144k2?112?0, ?y?k(x?3),144k2?112?96k2则x1?x2?,x1?x2?,
7?16k27?16k2?49k2∴y1y2?k??x1?3??x2?3???k?x1x2?3?x1?x2??9??. 27?16k22uuuuruuur?49(k2?1) AM?AN??x1?3??x2?3??y1y2?7?16k2?7x2?16y2?112112由?得7x2?16k2x2?112,则x2?, 2 y?kx7?16k?uuur2uuuuruuuruuur2112(1?k2)72222∴OQ?x?y?(1?k)x?,由可解得. AM?AN??OQ???7?16k216uuuuruuuruuur27综上,存在常数???,使AM?AN??OQ总成立.
1621.【解】(Ⅰ)f?(x)?1?a , x∵函数在x=2处的切线l与直线x+2y-3=0平行, ∴k?11?a??,解得a=1 22(Ⅱ)由(1)得f(x)=lnx-x,∴f(x)+m=2x-x2,即x2-3x+lnx+m=0,
法1:设h(x)=x2-3x+lnx+m,(x>0)
2x2?3x?1(2x?1)(x?1)1则h′(x)=2x-3+=, ?xxx1令h′(x)=0,得x1=,x2=1,列表得:
2x h′(x) h(x) (1,1) 21 0 极小值 (1,2) + 2 m-2+ln2 - ∴当x=1时,h(x)的极小值为h(1)=m-2, 又h(
15)=m??ln2,h(2)=m-2+ln2, 241∵方程f(x)+m=2x-x2在[,2]上恰有两个不相等的实数根,
2???h(1)?0?m?2?0??5∴?h(2)≥0,即?m?2?ln2≥0,解得?ln2≤m?2
4?1?5?h()≥0?m?-ln2≥0?2?4法2:∴f(x)+m=2x-x2,即m=-x2+3x-lnx,x?[,2] 法1:设h(x)=-x2+3x-lnx,x?[,1],
1212?2x2?3x?1?(2x?1)(x?1)1则h′(x)=-2x+3-=, ?xxx1令h′(x)=0,得x1=,x2=1,列表得:
2x h′(x) (1,1) 21 0 (1,2) - 2 + h(x) 增函数 极大值 减函数 2-ln2 ∴当x=1时,h(x)的极大值为h(1)=2, 又h(
31115)=?ln2,h(2)=2-ln2,h()-h(2)=2ln2->0,h()>h(2)
4222415∵方程f(x)+m=2x-x2在[,2]上恰有两个不相等的实数根,??ln2≤m?2
421x2?(b?1)x?112 (Ⅲ)∵g(x)?lnx?x?(b?1)x,∴g?(x)??x?(b?1)?,
xx2由g?(x)?0得x2?(b?1)x?1?0∴x1?x2?b?1,x1x2?1,
15?x?≥1?x2131?1∴x2?,又b≥,∴?解得:0?x1≤
x122?0?x?11?x1?∴g(x2)?g(x2)?lnx112112?(x1?x2)?(b?1)(x1?x2)?2lnx1?(x12?2), x222x1111F(x)?2lnx?(x2?2) (0?x≤)2x2
21?(x2?1)21则F?(x)??x?3?,∴F(x)在?0(0,]上单调递减;
xxx32111515∴当x1?时,F(x)min?F()??2ln2,∴k≤?2ln2
2288∴k的最大值为
15?2ln2. 822.【解】(Ⅰ)由切割线定理得FG2?FA?FD.
又EF?FG,所以EF2?FA?FD,即
EFFD. ?FAEF因为?EFA??DFE,所以△FED∽△EAF, 所以?DEF??EAD.
(Ⅱ)由(Ⅰ)得?DEF??EAD,因为?FAE??DAB??DCB,
所以?FED??BCD,所以EF∥CB.
23.【解】(Ⅰ) 以极点为坐标原点,极轴为x轴的正半轴,建立直角坐标系, 则由题意,得圆C1的直角坐标方程 x2+y2-4x=0,
直线l的直角坐标方程 y=x.
?x2+y2-4x=0,?x=0,?x=2,
由? 解得?或 ? ?y=x,?y=0,?y=2.
所以A(0,0),B(2,2).
从而圆C2的直角坐标方程为(x-1)2+(y-1)2=2,即x2+y2=2x+2y. 将其化为极坐标方程为:?2-2?(cos?+sin?)=0,即?=2(cos?+sin?). (Ⅱ)∵C1(2,0),r1?2,C2(1,1),r2?2,
∴ |MN|最大值?|C1C2|?2?2?22?2.
24.【解】(Ⅰ)当a??1时,不等式为x?1?x?3≤1
当x≤?3,不等式转化为?(x?1)?(x?3)≤1,不等式解集为空集; 5当?3?x??1,不等式转化为(x?1)?(x?3)≤1,解之得?≤x??1;
2当x≥?1时,不等式转化为(x?1)?(x?3)≤1,恒成立; 5综上不等式的解集为[?,??).
2(Ⅱ)若x?[0,3]时,f(x)≤4恒成立,即|x?a|≤x?7,亦即?7≤a≤2x?7恒成立,
又因为x?[0,3],所以?7≤a≤7,所以a的取值范围为[?7,7].
相关推荐: