杆的力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。
4.齿轮齿条式手爪
这种手爪通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。 5.平行杠杆式手爪
采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,比带有导轨的平行移动手爪的摩擦力要小很多。
3.1.4末端执行器的具体设计
由于本设计所采用标准气爪,不需要进行设计,直接选型即可。
本设计要求机械手手爪的最大持重m=2Kg,根据具体的工作要求,选择标准 平行开闭型气爪,其结构如图3-1所示。当A口进气B口排气时,气缸活塞杆1伸出,通过杠杆2绕杠杆轴8回转,带动两个手指4通过一组钢球3在导轨5上作向外直线运动,两手指便张开,松开工件。止动块6限制手指张开行程,定位销7保证直线导轨不错位。
图3-1平行开闭型气爪结构原理图
1-活塞杆 2-杠杆 3-钢球 4-手指 5-导轨 6-止动块 7-定位销 8-杠杆轴
对夹持工件进行受力分析如图3-2所示, 2个手指的总夹持力产生的摩擦力2μF必须大于夹持工件的重力mg,故应满足 2μF>mg 即 F>mg/2μ
- 17
式中 μ—摩擦系数,本设计的夹持辅助件材料为硬质橡胶,一般令μ=0.65; 由此 F>mg/2μ=239.8/(230.65)=15.1N
图3-2 夹持工件受力示意图
根据计算出的夹持力的大小和表3-1,可选择合适的末端执行器(手爪)的型号:MHZ-10D。
表3-1
- 18
3.2机械手手臂的设计
3.2.1 机械手手臂的设计要求
手臂是机械手的主要部分,它的作用是支承手部(包括工件或工具),并带动它们作空间运动。手臂运动应该包括3个运动:伸缩、回转和升降。手臂的伸缩运动由伸缩手臂完成,手臂的回转和升降运动设置在机身处,分别由回转臂和升降手臂完成。
臂部运动的目的:把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部应该具备3个自由度才能满足基本要求,既手臂伸缩、左右回转、和升降运动。手臂的各种运动通常用驱动机构和各种传动机构来实现,从臂部的受力情况分析,它在工作中即直接承受腕部、手部、和工件的静、动载荷,而且自身运动较多。因此,它的结构、工作范围、灵活性等直接影响到机械手的工作性能。
在进行机械手手臂设计时,要遵循下述原则:
1.应尽可能使机械手手臂各关节轴相互平行,相互垂直的轴应尽可能相交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手的控制。
2.机械手手臂的结构尺寸应满足机械手工作空间的要求。工作空间的形状和大小与机械手手臂的长度,手臂关节的转动范围有密切的关系。但机械手手臂末端工作空间并没有考虑机械手手腕的空间姿态要求,如果对机械手手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。
3.为了提高机械手的运动速度与控制精度,应在保证机械手手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机械手手臂。目前,在国外,也在研究用碳纤维复合材料制造机械手手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比重相当于钢的1/4,相当于铝合金的2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机械手手臂结构的优化设计。在保证所需强度与
-
19
刚度的情况下,减轻机械手手臂的重量。
4.机械手各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。
5.机械手的手臂相对其关节回转轴应尽可能在重量上平衡,这对减小电机负载和提高机械手手臂运动的响应速度是非常有利的。在设计机械手的手臂时,应尽可能利用在机械手上安装的机电元器件与装置的重量来减小机械手手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。
6.机械手手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的机械限位块,以及驱动装置,传动机构及其它元件的安装。
3.2.2机械手手臂的具体设计方案
常见的手臂结构有以下几种: (1)双导杆手臂伸缩机构。
(2)手臂的典型运动形式有:直线运动,如手臂的伸缩,升降和横向移动;回
转运动,如手臂的左右摆动,上下摆动;复合运动,如直线运动和回转运动组合,两直线运动的双层气缸空心结构。 (3)双活塞杆气缸结构。 (4)活塞杆和齿轮齿条机构。
在本气动机械手中,直线和旋转模块均可采用气缸驱动,气动机械手所能执行的运动示意图如图3-3所示。
图3-3 机械手运动示意图
-
20
相关推荐: