22.(10分)如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1. (1)求反比例函数和一次函数的解析式;
(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.
23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.
(1)求证:直线BD是⊙O的切线; (2)求⊙O的半径OD的长; (3)求线段BM的长.
24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C. (1)求此抛物线和直线AB的解析式;
(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作
x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;
(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.
2019年四川省宜宾市中考数学试卷
参考答案与试题解析
一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。 1.(3分)2的倒数是( ) A.
【考点】17:倒数.
B.﹣2 C. D.
【分析】根据倒数的定义,可以求得题目中数字的倒数,本题得以解决. 【解答】解:2的倒数是, 故选:A.
【点评】本题考查倒数,解答本题的关键是明确倒数的定义.
2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A.5.2×106
﹣
B.5.2×105
﹣
C.52×106
﹣D.52×105
﹣
【考点】1J:科学记数法—表示较小的数. 【分析】由科学记数法可知0.000052=5.2×105;
﹣
【解答】解:0.000052=5.2×105;
﹣
故选:B.
【点评】本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.
3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE绕着点A顺时针旋转到与△ABF重合,则EF=( )
A.
B.
C.5
D.2
【考点】LE:正方形的性质;R2:旋转的性质.
【分析】根据旋转变换的性质求出FC、CE,根据勾股定理计算即可. 【解答】解:由旋转变换的性质可知,△ADE≌△ABF, ∴正方形ABCD的面积=四边形AECF的面积=25, ∴BC=5,BF=DE=1, ∴FC=6,CE=4, ∴EF=故选:D.
【点评】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.
4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为( ) A.﹣2
B.b
==2.
C.2 D.﹣b
【考点】AB:根与系数的关系.
【分析】根据“一元二次方程x2﹣2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.
【解答】解:根据题意得: x1+x2=﹣故选:C.
【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.
5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )
=2,
A.10
B.9
C.8 D.7
【考点】U3:由三视图判断几何体.
【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
相关推荐: