20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度. 【考点】B7:分式方程的应用.
【分析】设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C城,以时间做为等量关系列方程求解.
【解答】解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时. 根据题意,得:
+=
,
解得:x=80,或x=﹣110(舍去), ∴x=80,
经检验,x=,80是原方程的解,且符合题意. 当x=80时,x+10=90.
答:甲车的速度为90千米/时,乙车的速度为80千米/时.
【点评】本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=
,列方程求解.
21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)
【考点】TA:解直角三角形的应用﹣仰角俯角问题.
【分析】设AM=x米,根据等腰三角形的性质求出FM,利用正切的定义用x表示出EM,根据题意列方程,解方程得到答案. 【解答】解:设AM=x米,
在Rt△AFM中,∠AFM=45°, ∴FM=AM=x,
在Rt△AEM中,tan∠AEM=则EM=
=
x,
x=40, ,
由题意得,FM﹣EM=EF,即x﹣解得,x=60+20
,
,
∴AB=AM+MB=61+20
答:该建筑物的高度AB为(61+20)米.
【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
22.(10分)如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1. (1)求反比例函数和一次函数的解析式;
(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.
【考点】G8:反比例函数与一次函数的交点问题.
【分析】(1)根据系数k的几何意义即可求得k,进而求得P(1,2),然后利用待定系数法即可求得一次函数的解析式;
(2)设直线y=﹣x+3交x轴、y轴于C、D两点,求出点C、D的坐标,然后联立方程求得P、M的坐标,最后根据S五边形=S△COD﹣S△APD﹣S△BCM,根据三角形的面积公式列式计算即可得解;
【解答】解:(1)∵过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.
∴S△OPA=|k|=1,
∴|k|=2, ∵在第一象限, ∴k=2,
∴反比例函数的解析式为y=;
∵反比例函数y=(k>0)的图象过点P(1,m), ∴m==2, ∴P(1,2),
∵次函数y=﹣x+b的图象过点P(1,2), ∴2=﹣1+b,解得b=3, ∴一次函数的解析式为y=﹣x+3;
(2)设直线y=﹣x+3交x轴、y轴于C、D两点, ∴C(3,0),D(0,3), 解
得
或
,
∴P(1,2),M(2,1),
∴PA=1,AD=3﹣2=1,BM=1,BC=3﹣2=1,
∴五边形OAPMB的面积为:S△COD﹣S△BCM﹣S△ADP=×3×3﹣×1×1﹣×1×1=.
【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积以及反比例函数系数k的几何意义,求得交点坐标是解题的关键.
23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.
(1)求证:直线BD是⊙O的切线; (2)求⊙O的半径OD的长; (3)求线段BM的长.
【考点】M5:圆周角定理;ME:切线的判定与性质.
【分析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;
(2)根据直角三角形的性质得到OD=OB,于是得到结论; (3)解直角三角形得到DE=2,BD=根据切割线定理即可得到结论.
【解答】(1)证明:∵OA=OD,∠A=∠B=30°, ∴∠A=∠ADO=30°, ∴∠DOB=∠A+∠ADO=60°, ∴∠ODB=180°﹣∠DOB﹣∠B=90°, ∵OD是半径, ∴BD是⊙O的切线;
(2)∵∠ODB=90°,∠DBC=30°, ∴OD=OB, ∵OC=OD, ∴BC=OC=1,
∴⊙O的半径OD的长为1; (3)∵OD=1, ∴DE=2,BD=∴BE=
, =
,
,根据勾股定理得到BE=
=
,
∵BD是⊙O的切线,BE是⊙O 的割线,
相关推荐: