第一范文网 - 专业文章范例文档资料分享平台

2019年四川省宜宾市中考数学试卷(解析版)

来源:用户分享 时间:2025/5/15 11:20:00 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴BD2=BM?BE, ∴BM=

【点评】本题考查了切线的判定和性质,圆周角定理,直角三角形的性质,勾股定理,切割线定理,正确的识别图形是解题的关键.

24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C. (1)求此抛物线和直线AB的解析式;

(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;

(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.

【考点】HF:二次函数综合题.

【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;

(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;

(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由

,得到m的表达式,利用二次函数求最值问题配方即可.

【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,

∴∴

∴抛物线的解析式为y=x2﹣2x﹣3,

∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点, ∴

,解得:

∴直线AB的解析式为y=x﹣3, (2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴抛物线的顶点C的坐标为(1,﹣4), ∵CE∥y轴, ∴E(1,﹣2), ∴CE=2,

①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN, 设M(a,a﹣3),则N(a,a2﹣2a﹣3),

∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,

解得:a=2,a=1(舍去), ∴M(2,﹣1),

②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,

设M(a,a﹣3),则N(a,a2﹣2a﹣3), ∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a, ∴a2﹣3a=2, 解得:a=∴M(

,a=

),

).

(舍去),

综合可得M点的坐标为(2,﹣1)或((3)如图,作PG∥y轴交直线AB于点G,

设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m, ∴S

PAB

=S

PGA+S

PGB

===﹣

∴当m=时,△PAB面积的最大值是

,此时P点坐标为(

).

【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.

2019年四川省宜宾市中考数学试卷(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6vy2d9z01x5nd0e7n2yj9vfqx3d4pq0160t_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top