备战2019中考初中数学导练学案50讲
第43讲 三角形与图形变换
【疑难点拨】
1.熟练掌握三角形中的轴对称、平移、及其的旋转的基本性质和基本方法. 2.结合具体三角形问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法.
3.注重三角形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等. 【基础篇】
1. 如图,△ABC与△A′B′C′成中心对称,则下列说法不正确的是( )
A.S△ACB=S?A?B?C? B.AB=A′B′ C.AB∥A′B′,A′C′∥AC,BC∥B′C′ D.S?A?B?O=S△ACO
2. (2018?山西?3分)如 图 ,在 Rt△ ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到
△ A’ B’ C, 此 时 点 A’ 恰好在 AB 边 上 , 则 点 B’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6
C.62 D. 63
3. (2017山东聊城)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
4. 如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点B、A、B1在同一条直线上,那么旋转角等于( )
A.30° B.60° C.90° D.180°
5. (2017?玉林)如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是( )
A.240°
B.360°
C.480°
D.540°
6. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为 .
A.20° B.30° C.150° D.25°
7. (2017山东滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结
论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )
A.4 B.3 C.2 D.1
8. (2017广西)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为 .
9. (2018?山东淄博?4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )
A.
B.
C.
D.
10. (2018?黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn= .
【能力篇】 一、选择题:
11. 如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)
12. 如图,已知在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.
13. 在等边△ABC中:
图1 图2
(1)如图1,P、Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
相关推荐: