第一范文网 - 专业文章范例文档资料分享平台

备战2019中考初中数学导练学案50讲—第43讲三角形与图形变换(讲练版)

来源:用户分享 时间:2025/5/26 4:24:02 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

A.240°

B.360°

C.480°

D.540°

【考点】MI:三角形的内切圆与内心;KK:等边三角形的性质;R2:旋转的性质.. 【分析】根据正三角形的性质分别得出点O转动的角度,进而得出答案.

【解答】解:由题意可得:第一次AO顺时针转动了120°,第二次AO顺时针转动了240°,第三次AO顺时针转动了120°,

故当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是:120°+240°+120°=480°. 故选:C.

【点评】此题主要考查了正三角形的性质以及旋转的性质,分别得出旋转角度是解题关键.

6. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为 .

【分析】先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.

【解答】解:∵将△ABC绕点A逆时针旋转150°,得到△ADE, ∴∠BAD=150°,AD=AB, ∵点B,C,D恰好在同一直线上, ∴△BAD是顶角为150°的等腰三角形, ∴∠B=∠BDA, ∴∠B=

1(180°﹣∠BAD)=15°, 2故答案为:15°.

【点评】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判

断出三角形ABD是等腰三角形是解本题的关键.

7. (2017山东滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )

A.4 B.3 C.2 D.1

【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.

【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.

【解答】解:如图作PE⊥OA于E,PF⊥OB于F. ∵∠PEO=∠PFO=90°, ∴∠EPF+∠AOB=180°, ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN, ∴∠EPM=∠FPN,

∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F, ∴PE=PF,

在△POE和△POF中,

∴△POE≌△POF, ∴OE=OF,

在△PEM和△PFN中,

∴△PEM≌△PFN,

∴EM=NF,PM=PN,故(1)正确, ∴S△PEM=S△PNF,

∴S四边形PMON=S四边形PEOF=定值,故(3)正确, ∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确, MN的长度是变化的,故(4)错误, 故选B.

8. (2017广西)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为 .

【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.

【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解. 【解答】解:连接PP′,如图,

∵线段PC绕点C顺时针旋转60°得到P'C, ∴CP=CP′=6,∠PCP′=60°, ∴△CPP′为等边三角形, ∴PP′=PC=6,

∵△ABC为等边三角形, ∴CB=CA,∠ACB=60°,

∴∠PCB=∠P′CA, 在△PCB和△P′CA中

∴△PCB≌△P′CA, ∴PB=P′A=10, ∵62+82=102, ∴PP′2+AP2=P′A2,

∴△APP′为直角三角形,∠APP′=90°, ∴sin∠PAP′=故答案为

=

=

9. (2018?山东淄博?4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )

A.

B.

C.

D.

【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.

【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积. 【解答】解:∵△ABC为等边三角形, ∴BA=BC,

备战2019中考初中数学导练学案50讲—第43讲三角形与图形变换(讲练版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6w3dj82xuh6rgfk15sw18xzko02xvg00fsz_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top