认为s0接近1)。
并且,即使s0>1/σ,从(19),(20)式可以看出, σ减小时, s?增加(通过作图分析), im降低,也控制了蔓延的程度.我们注意到在σ=λμ中,人们的卫生水平越高,日接触率λ越小;医疗水平越高,日治愈率μ越大,于是σ越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.
从另一方面看, ?s??s?1/?是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被?s个健康者交换.所以当 s0?1/? 即?s0?1时必有 .既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。 五﹑群体免疫和预防
根据对SIR模型的分析,当s0?1/? 时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/σ变大以外,另一个途径是降低s0 ,这可以通过比如预防接种使群体免疫的办法做到.
忽略病人比例的初始值i0有s0?1?r0,于是传染病不会蔓延的条件s0?1/? 可以表为
r0?1?1?
这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)满足(11)式,就可以制止传染病的蔓延。
这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实际上这是很难做到的。据估计当时印度等国天花传染病的接触数 σ=5,由(11)式至少要有80%的人接受免疫才行。据世界卫生组织报告,即使花费大量资金提高r0,也因很难做到免疫者的均匀分布,使得天花直到1977年才在全世界根除。而有些传染病的σ更高,根除就更加困难。 六﹑模型验证
上世纪初在印度孟买发生的一次瘟疫中几乎所有病人都死亡了。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了模型作了验证。
首先,由方程(2),(3)可以得到
dr的实际数据,Kermack等人用这组数据对SIRdtdsd???si????si???sr dtdt1上式两边同时乘以dt可?ds???dr ,两边积分得
s
r1s??rsd???d??e ?lns|???rsrs?s0s?r0?00s0s所以: s(t)?s0e??r(t) (12)
再?dr??i??(1?r?s)??(1?r?s0e??r) (13) dt??r当 r?1/? 时,取(13)式右端eTaylor展开式的前3项得:
s0?2r2dr??(1?r?s0??s0r?) dt2在初始值r0=0 下解高阶常微分方程得:
r(t)?1???t? (s??1)??th(??)0?s0?2?2??s0??1其中?2?(s0??1)2?2s0i0?2,th??? 从而容易由(14)式得出:
dr?2?? dt2s?2ch2(??t??)02然后取定参数 s0, σ等,画出(15)式的图形,如图4中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。
七﹑被传染比例的估计
在一次传染病的传播过程中,被传染人数的比例是健康者人数比例的初始值s0与s?之差,记作x,即x?s0?s? (16) 当i0很小,s0接近于1时,由(9)式可得
x?1?ln(1?x)?0 (17) s0取对数函数Taylor展开的前两项有
x(1?1s0?1?x)?0 (18) 22s0?1记 s0???? , ? 可视为该地区人口比例超过阈值
?的部分。当 ??1?时(18)式给
出x?2s0??s0???1??2? (19) ???1这个结果表明,被传染人数比例约为?的2倍。对一种传染病,当该地区的卫生和医疗水平不变,即?不变时,这个比例就不会改变。而当阈值
?提高时,?减小,于是这个比例就
会降低。
这是一个关于传染病方面的实例,看起来很复杂的题目,用数学建模就可以化抽象为具体,简单的利用微分方程,图像,以及必要的数学软件就可以解决问题,同时把问题细化,分析了各种变量的影响。具体到七各方面的分析综合,这样一个问题就解决了。
建模活动本身就是教学方法改革的一种探索,它打破常规的那种老师台上讲,学生听,一味钻研课本的传统模式,而采取提出问题,课堂讨论,带着问题去学习、不固定于基本教材,不拘泥于某种方法,激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。这对于我们以后所从事的教育工作也是一个很好的启发。于以前所学的文化知识,使我终生难忘。
数学建模之心得体会
一年一度的全国数学建模大赛在每年的9 月的第三个周末的周五上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1. 团队精神
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2. 有影响力的leader
在比赛中,leader 是很重要的,他的作用就相当与计算机中的CPU,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做A 题,有人想做B 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3. 合理的时间安排
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分
十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4. 正确的论文格式 论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5. 论文的写作
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6. 算法的设计
算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
相关推荐: