现在有货运收费项目及收费标准表,行驶路程S(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:
货运收费项目及收费标准表 运输工具 汽车 火车
⑴汽车的速度为__________千米/时, 火车的速度为_________千米/时;
设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围)及x为何值时y汽>y火;
(总费用=运输费+冷藏费+固定费用)
⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?
25.(本小题满分10分)
如图14①至图14④中,两平行线AB、CD音的距离均为6,点M为AB上一定点.
25 24 23 22 21 20 19 18 17 S(千米) 200 120 O 2 t(时) 图13①
货运量(吨) 23 22 24 运输费单价 2 1.6 冷藏单价 5 5 固定费用 元/次 200 2280 火车 汽车
元/(吨?千米) 元/(吨?时) 22 20 17 19 周一 周二 周三 周四 周五 周六 周日 时间 图13 ②
思考:
如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,
当α=________度时,点P到CD的距离最小,最小值为____________. 探究一
在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________.
探究二
将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转. ⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=
343434A
M α P O N B
6 C A
M
图14 ① D B
O N C
M α P M 图14 ③ 6 P 图14 ②
D
A B
O 6 C A
D B
α O )
C
6 ,cos41°=,tan37°=
P 图14 ④ D
26.(本小题满分12分)
如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长
的速度运动t(t>0)秒,抛物线y=x+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求c、b(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,S=
2182
;
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围. ..y A O -1 1 D P x N M B 图15 C
新课标第一网
相关推荐: