37 66 93 97 136 112 122 38 39 40 41
74 60 63 66
70 74 75 80
76 109 88 105 71 72 90 71 66 130 101 90 86 130 117 144
42 77 67 74 83 92 107 43 70 67 100 150 142 146 44 73 76 81 119 120 119 45 78 90 77 122 155 149 46 73 68 80 102 90 122 47 72 83 68 104 69 96 48 65 60 70 119 94 89
49 52 70 76 92 94 100
4.8 从某校初一学生中随机选取n=140名,考察四个指标,学生的得分值的样本相关系数矩阵如下:
X1:阅读速度; X2:阅读理解力;Y1:计算速度;Y2:计算正确程度; (1) 求各典型变量对及典型相关系数;
(2) 给定显著水平??0.05,检验各典型变量对是否显著相关,并解释显著相关的典型变量
对的意义。
x1 1.00 0.63 0.24 0.06 x2 0.63 1.00 -0.06 0.07 y1 0.24 -0.06 1.00 0.42 y2 0.06 0.07 0.42 1.00
4.9 下面是25个家庭的成年长子的头长、头宽与成年次子的头长、头宽的观测数据: 试分别从样本协方差矩阵?和样本相关系数矩阵R出发做典型相关分析,求各典型变量对及典型相关系数,检验各典型变量对是否显著相关(??0.05)。两种情况下的结果有何异同。
1 191 155 179 145 2 195 149 201 152 3 181 148 185 149 4 183 153 188 149 5 176 144 171 142 6 208 157 192 152 7 189 150 190 149 8 197 159 189 152 9 188 152 197 159 10 192 150 187 151 11 179 158 186 148 12 183 147 174 147 13 174 150 185 152
14 190 159 195 157 15 16 17 18
188 151 187 158 163 137 161 130 195 155 183 158 186 153 173 148
19 181 145 182 146 20 175 140 165 137 21 192 154 185 152 22 174 143 178 147 23 176 139 176 143 24 197 167 200 158 25 190 163 187 150
4.10 下面是49位女性在空腹情况下三个不同时刻的血糖含量(用X1,X2,X3表示)和在摄入等量食糖一小时后的三个时刻的血糖含量(用Y1,Y2,Y3表示)的观测值(单位:mg/100ml),数据如下: 对X=(X1,X2,X3)和Y=( Y1,Y2,Y3)作典型相关分析,求各典型变量对及典型相关系数,检验各典型变量对是否显著相关(??0.05),并解释显著相关的典型变量对的意义。
T
T
1 60 69 62 97 69 98 2 56 53 84 103 78 107 3 4 5 6
80 55 62 74
69 80 75 64
76 66 99 130 90 80 85 114 68 116 130 91 70 109 101 103
7 64 71 66 77 102 130 8 73 70 64 115 110 109 9 68 67 75 76 85 119 10 69 82 74 72 133 127 11 60 67 61 130 134 121 12 70 74 78 150 158 100 13 66 74 78 150 131 142 14 83 70 74 99 98 105 15 68 66 90 119 85 109 16 78 63 75 164 98 138 17 103 77 77 160 117 121 18 77 68 74 144 71 153 19 66 77 68 77 82 89 20 70 70 72 114 93 122 21 75 65 71 77 70 109 22 91 74 93 118 115 150 23 66 75 73 170 147 121 24 75 82 76 153 132 115 25 74 71 66 143 105 100
26 76 70 64 114 113 129 27 28 29 30
74 74 67 78
90 77 71 75
86 73 106 116 80 116 81 77 69 63 87 70 80 105 132 80
31 64 66 71 83 94 133 32 71 80 76 81 87 86 33 63 75 73 120 89 59 34 90 103 74 107 109 101 35 60 76 61 99 111 98 36 48 77 75 113 124 97 37 66 93 97 136 112 122 38 74 70 76 109 88 105 39 60 74 71 72 90 71 40 63 75 66 130 101 90 41 66 80 86 130 117 144 42 77 67 74 83 92 107 43 70 67 100 150 142 146 44 73 76 81 119 120 119 45 78 90 77 122 155 149 46 73 68 80 102 90 122 47 72 83 68 104 69 96 48 65 60 70 119 94 89 49 52 70 76 92 94 100
第五章 判别分析
(一)目的与要求:
能对两个总体与多个总体建立判别函数,并作判别分析。理解距离判别与Bayes判别的条件与结果的区别。
(二)重点与难点:
掌握分类的方法并能应用;
能针对多个总体协方差相等与不相等两种情况建立判别函数,并能利用判别函数作具体的分析。
5.1 下面是某地区气象综合因子的观测数据,假定两总体的协方差相等,进行判别分析,并给出误判率的回代估计与交叉确认估计。
G1 24.8 -2.0 G1 24.1 -2.4 G1 26.6 -3.0 G1 23.5 -1.9 G1 25.5 -2.1 G1 27.4 -3.1 G2 22.1 -0.7
G2 21.6 -1.4 G2 22.0 -0.8 G2 22.8 -1.6 G2 22.7 -1.5 G2 21.5 -1.0 G2 22.1 -1.2 G2 21.4 -1.3
5.3 下面给出了1991年我国30个省、区、市城镇居民的月平均消费数据(单位:元/人),设前20个省份为第1类G1,21-27号为第2类G2,最后三个省份待判:
进行距离判别,给出线性及二次判别函数,并给出误判率的回代估计与交叉确认估计。 山西 G1 8.35 23.53 7.51 8.62 17.42 10.00 1.04 11.21 内蒙古 G1 9.25 23.75 6.61 9.19 17.77 10.48 1.72 10.51 吉林 G1 8.19 30.50 4.72 9.78 16.28 7.60 2.52 10.32 黑龙江 G1 7.73 29.20 5.42 9.43 19.29 8.49 2.52 10.00 河南 G1 9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76 甘肃 G1 9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35 青海 G1 10.06 28.64 10.52 10.05 16.18 8.39 1.96 10.81 河北 G1 9.09 28.12 7.40 9.62 17.26 11.12 2.49 12.65 陕西 G1 9.41 28.20 5.77 10.80 16.36 11.56 1.53 12.17 宁夏 G1 8.70 28.12 7.21 10.53 19.45 13.30 1.66 11.96 新疆 湖北 云南 湖南
G1 G1 G1 G1
6.93 29.85 8.67 36.05 9.98 37.69 6.77 38.69
4.54 7.31 7.01 6.01
9.49 16.62 10.65 1.88 13.61 7.75 16.67 11.68 2.38 12.88 8.94 16.15 11.08 0.83 11.67 8.82 14.79 11.44 1.74 13.23
安徽 G1 8.14 37.75 9.61 8.49 13.15 9.76 1.28 11.28 贵州 G1 7.67 35.71 8.04 8.31 15.13 7.76 1.41 13.25 辽宁 G1 7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29 四川 G1 7.18 40.91 7.32 8.94 17.60 12.75 1.14 14.80 山东 G1 8.82 33.70 7.59 10.98 18.82 14.73 1.78 10.10 江西 G1 6.25 35.02 4.72 6.28 10.03 7.15 1.93 10.39 福建 G2 10.60 52.41 7.70 9.98 12.53 11.70 2.31 14.69 广西 G2 7.27 52.65 3.84 9.16 13.03 15.26 1.98 14.57 海南 G2 13.45 55.85 5.50 7.45 9.55 9.52 2.21 16.30 天津 G2 10.85 44.68 7.32 14.51 17.13 12.08 1.26 11.57 江苏 G2 7.21 45.79 7.66 10.36 16.56 12.86 2.25 11.69 浙江 G2 7.68 50.37 11.35 13.30 19.25 14.59 2.75 14.87 北京 G2 7.78 48.44 8.00 20.51 22.12 15.73 1.15 16.61 西藏 * 7.94 39.65 20.97 20.82 22.52 12.41 1.75 7.90 上海 * 8.28 64.34 8.00 22.22 20.06 15.12 0.72 22.89 广东 * 12.47 76.39 5.52 11.24 14.52 22.00 5.46 25.50
5.4 在有关地震预报的研究中,遇到砂基液化的问题。选择了7个有关因素X1-X7。今从已
相关推荐: