∴∴
=,
,
=,
∴△AEF∽△BAG, ∴∠AEF=∠BAG, ∵∠BAG+∠EAO=90°, ∴∠AEF+∠EAO=90°, ∴∠AOE=90°, ∴EF⊥AG;
(2)解:成立;理由如下: 根据题意得:∵∴
=,
,
=,
又∵∠EAF=∠ABG, ∴△AEF∽△BAG, ∴∠AEF=∠BAG, ∵∠BAG+∠EAO=90°, ∴∠AEF+∠EAO=90°, ∴∠AOE=90°, ∴EF⊥AG;
(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示: 则MN⊥AD,MN=AB=4,
∵P是正方形ABCD内一点,当S△PAB=S△OAB,
∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小, 此时PA=PB,PM=MN=2,
连接EG、PA、PB,则EG∥AB,EG=AB=4,
∴△AOF∽△GOE, ∴
=,
∵MN∥AB, ∴
=,
∴AM=AE=×2=, 由勾股定理得:PA=
=
, +4.
∴△PAB周长的最小值=2PA+AB=
25.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.2·1·c·n·j·y
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P
的坐标.【来源:21·世纪·教育·网】 【考点】HF:二次函数综合题.
【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题; (2)如图1中,设E(m,0),则C(m, m2﹣m),B(﹣m2+由E、B关于对称轴对称,可得
m,0),
=2,由此即可解决问题;
(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可; 【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣, 把(0,0)代入得到a=,
∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.
(2)如图1中,设E(m,0),则C(m, m2﹣m),B(﹣m2+ m,0),
∵E′在抛物线上,
∴E、B关于对称轴对称, ∴
=2,
解得m=1或6(舍弃), ∴B(3,0),C(1,﹣2), ∴直线l′的解析式为y=x﹣3.
(3)如图2中,
①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3). ②当N′=N′B′时,设P(m,m﹣3), 则有(m﹣解得m=∴P2(
)2+(m﹣3﹣
或,
)2=(3, ),P3(
,
,
).
)
)2,
综上所述,满足条件的点P坐标为(0,﹣3)或(或(
,
).
2017年7月1日
相关推荐: