第一范文网 - 专业文章范例文档资料分享平台

(完整word版)高中数学必修四测试卷及答案(3),推荐文档

来源:用户分享 时间:2025/6/4 4:18:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

21、设平面三点A(1,0),B(0,1),C(2,5).

(1)试求向量2AB+AC的模; (2)试求向量AB与AC的夹角; (3)试求与BC垂直的单位向量的坐标.

22、(14分)已知函数f(x)?3sin(?x??)?cos(?x??)(0???π,??0)为偶函数,且

函数y?f(x)图象的两相邻对称轴间的距离为(Ⅰ)求f?

π. 2?π?

?的值; ?8?

π个单位后,得到函数y?g(x)的图象,求g(x)的单调递减6(Ⅱ)将函数y?f(x)的图象向右平移区间.

答案

5

1-5BCBAA 6-10ABAAB 11-12CC 13、 2 ?6 14、2 15、[?3?k?,5?6?k?],k?z 16、①②③ 17、由题设

, 设 b=

, ,得

. ∴

,

解得 sinα=1或 。

当sinα=1时,cosα=0;当 时, 。

故所求的向量 或

18、

539 f(x)?6?1?cos2x2?3sin2x19、1)

?3cos2x?3sin2x?3 ?23??31??cos2x?sin2x??22???3??23cos???2x??6???3.故f(x)的最大值为23?3;

最小正周期T?2?2??.21世纪教育网 ☆

23cos?(2)由f(?)?3?23得??2????6???3?3?23???,故cos??2??6????1.

0?????又由

2得6?2?????56???6,故2??6??,解得

??12?. 从而tan45??tan?3?3.

6

由则

20、y?2sin(2x??4)

21、(1)∵ AB=(0-1,1-0)=(-1,1),AC=(2-1,5-0)=(1,5). ∴ 2AB+AC=2(-1,1)+(1,5)=(-1,7). ∴ |2AB+AC|=(?1)2?72=50.

22(2)∵ |AB|=(?1)?1=2.|AC|=12?52=26,

AB·AC=(-1)×1+1×5=4.

∴ cos ? =AB?AC|AB|?|AC|=

42?26=

213. 13(3)设所求向量为m=(x,y),则x2+y2=1. ①

又 BC=(2-0,5-1)=(2,4),由BC⊥m,得2 x +4 y =0. ②

??2525?x??x?-252555??55由①、②,得?或? ∴ (,-)或(-,)即为所求.

5555?y??5.?y?5.??55??

22、 解:(Ⅰ)f(x)?3sin(?x??)?cos(?x??)

?3?1?2?sin(?x??)?cos(?x??)?

2?2?π???2sin??x????.

6??因为f(x)为偶函数,

所以对x?R,f(?x)?f(x)恒成立, 因此sin(??x???)?sin??x???π6??π??. 6?即?sin?xcos?????π?π?π?π??????cos?xsin?????sin?xcos?????cos?xsin????, 6?6?6?6???? 7

整理得sin?xcos?????π???0. 6?因为??0,且x?R, 所以cos?????π???0. 6?又因为0???π, 故??ππ?. 62??π???2cos?x. 2?所以f(x)?2sin??x?由题意得

2ππ?2g,所以??2. ?2故f(x)?2cos2x. 因此f?π?π??2cos?2. ?84??(Ⅱ)文:将f(x)的图象向右平移

π个单位后,得到6π??f?x??的图象,

6??所以g(x)?f?x?当2kπ≤2x???π???π??π???2cos2x??2cos2x??????. ??6?63??????π, ≤2kπ?π(k?Z)

3π2π即kπ?≤x≤kπ?(k?Z)时,g(x)单调递减,

63因此g(x)的单调递减区间为?kπ?

??π2π?,kπ??(k?Z). 63? 8

(完整word版)高中数学必修四测试卷及答案(3),推荐文档.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c72fu60nfb96zh7s4eqk6667gj1yjqg01cfg_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top