所以?k3?,即得k??3. 22所以实数k的取值范围为(?3,??). 14.【答案】(1)an?2n?1;(2)
n.
3(2n?3)22【解析】(1)由an?2an?4Sn?3,可知an?1?2an?1?4Sn?1?3. 22可得an?1?an?2(an?1?an)?4an?1,
22即2(an?1?an)?an?1?an?(an?1?an)(an?1?an).
由于an?0,可得an?1?an?2.
2又a1?2a1?4a1?3,解得a1??1(舍去)或a1?3.
所以{an}是首项为3,公差为2的等差数列,通项公式为an?2n?1. (2)由an?2n?1可知,bn?111?11??????. anan?1(2n?1)(2n?3)2?2n?12n?3?设数列{bn}的前n项和为Tn,则Tn?b1?b2?L?bn
n1111111?[(?)?(?)?L?(?)]?.
3(2n?3)235572n?12n?315.【答案】(1)证明见解析;(2).
13n?1【解析】(1)证明:由2an?an?1?3?2(n?2),得
an1an?13???, 2n42n?14所以
an1an?1?1?(n?1?1)(n?2). n242n?1由2an?an?1?3?2(n?2),可得2a2?a1?6,
又3a1?2a2,所以2a1?6,得a1?3.
所以数列{an11?1}是以为首项,为公比的等比数列. n224an11n?112n?1?1??()?(),所以an?2n(21?2n?1)?21?n?2n. n2242(2)由(1)知
所以Sn?(1?11?L?n?1)?(2?22?23?L?2n) 2211?()n2(1?2n)2???2?2n?21?n, 11?21?2111?1?n?,
an?Sn2?2n?2?2n?21?n3?2n所以Tn?1111111(??L?n)?(1?n)?, 324232313因为对?n?N*,Tn?m,所以m的最小值为.
相关推荐: