等比数列前n项和 教案
1.(2008福建)设{an}是公比为正数的等比数列,若n1=7,a5=16,则数列{an}前7项的和为( C )
A.63 B.64 C.127 D.128 2.数列{an}的前n项和为Sn,若a1=1,an+1 =3Sn(n ≥1),则a6=A
(A)3 × 44 (B)3 × 44+1 (C)44 (D)44+1 解析:由an+1 =3Sn,得an =3Sn-1(n ≥ 2),相减得an+1-an =3(Sn-Sn-1)= 3an,则an+1=4an
4
(n ≥ 2),a1=1,a2=3,则a6= a2·4=3×44,选A. 3.(2007湖南) 在等比数列{an}(n?N*)中,若a1?1,a4?为( B )
1,则该数列的前10项和81111 B. C. D. 2?2?2?242221021114.(2008浙江)已知?an?是等比数列,a2?2,a5?,则a1a2?a2a3???anan?1=(C )
4?n?nA.16(1?4) B.6(1?2) 3232?n?nC.(1?4) D.(1?2)
33A.2?5、已知等比数列的公比为2,前4项的和为1,则前8项的和等于 (B ) A、15 B、17 C、19 D、21
6、一个等比数列前几项和Sn=abn+c,a≠0,b≠0且b≠1,a、b、c为常数,那么a、b、c必须满足 ( C)
A、a+b=0 B、c+b=0 C、c+a=0 D、a+b+c=0
7、在等比数列{an}中,若S4=240,a2+a4=180,则a7= _6_____,q= _3___。
8.数列{an}满足a1=3,an+1=-,则an = ______,Sn= ______。
9.(2009浙江理)设等比数列{an}的公比q?S1,前n项和为Sn,则4? .
a42a1(1?q4)s41?q43答案:15解析 对于s4?,a4?a1q,??3?151?qa4q(1?q)
10.(2009全国卷Ⅱ文)设等比数列{an}的前n项和为sn。若a1?1,s6?4s3,则a4= 答案:3
33
解析:本题考查等比数列的性质及求和运算,由a1?1,s6?4s3得q=3故a4=a1q=3
11.(2007全国I) 等比数列?an?的前n项和为Sn,已知S1,2S2,3S3成等差数列,则?an?13
12:①已知等比数列?an?,a1?a2?a3?7,a1a2a3?8,则an?
的公比为 .答案
②已知数列?an?是等比数列,且Sm?10,S2m?30,则S3m=
③在等比数列?an?中,公比q?2,前99项的和S99?56,则a3?a6?a9?????a99? ④在等比数列?an?中,若a3?4,a9?1,则a6? ;若a3?4,a11?1,
则a7?
⑤在等比数列?an?中,a5?a6?a?a?0?,a15?a16?b,则a25?a26?
2 解:①a1a2a3?a2?8 ∴a2?2 ∴??a1?a3?5?a1?1 或 ???a1?a3?4?a3?4n?1?a1?4 ??a3?1n?1 当a1?1,a2?2,a3?4时,q?2,an?2
1?1? 当a1?4,a2?2,a3?1时,q?,an?4???2?2? ②?S2m?Sm??Sm??S3m?S2m??S3m?70
2
b1?a1?a4?a7?????a97 ③设b2?a2?a5?a8?????a98 则b1q?b2,b2q?b3,且b1?b2?b3?56
b3?a3?a6?a9?????a99 ∴b1?1?q?q?2?8 ∴b??56 即b?1?562?413?b1q2?32
22 ④a6?a3?a9 a6??2 a7?a3?a1 1 a7?2(-2舍去) 44 ∵当a7??2时,a7?a3q?4q?0
a15?a16?a15?a16a25?a26?b210??q ∴a25?a26?? ⑤
a5?a6a15?a16a5?a6a13.(本小题满分12分)
211,公比q?.
331?an(I)Sn为{an}的前n项和,证明:Sn?
2(II)设bn?log3a1?log3a2??log3an,求数列{bn}的通项公式.
已知等比数列{an}中,a1?14.已知等比数列{an},公比q>0,求证:SnSn+2 SnSn+2-Sn+12=(na1)[(n+2)a1]-[(n+1)a1]2=-a12 (2)q≠1 =-a12qn<0 ∴SnSn+2 SnSn+2-Sn+12=Sn(a1+qSn+1)-Sn+1(a1+qSn) =a1(Sn-Sn+1) = -a1a n+1= -a12qn<0 ∴SnSn+2
相关推荐: